Matematikada, ayniqsa funksional tahlil(analiz)da, Bessel tengsizligi ortonormal ketma-ketlikka nisbatan Gilbert fazosida elementning koeffitsientlari haqidagi jumladir. Tengsizlik 1828-yilda nemis olimi Friedrich Bessel (astronomiya, matematika, fizika va geodeziya fanlari olimi) tomonidan keltirib chiqarilgan.[1]

Gilbert fazosi va dagi ortonormal ketma-ketlik bo'lsin. U holda, dagi har qanday vektor uchun

munosabat o'rinli bo'ladi, bu yerda ⟨·,·⟩ belgi Gilbert fazosidagi skalyar ko'paytmani ifodalaydi.[2][3][4] Agar yo'nalishdagi vektor proyeksiyaning "cheksiz yig'indi" sidan tuzilgan

cheksiz summani aniqlasak, u holda Bessel tengsizligi bu qatorning yaqinlashuvchi ekanligini ta'kidlaydi. Bu haqda quyidagicha ham o'ylash mumkin: potensial bazis orqali ifodalanishi mumkin bo'lgan mavjud bo'ladi.

To'liq ortonormal ketma-ketlik uchun (ya'ni, bazis bo'lgan ortonormal ketma-ketlik uchun) biz Parseval ayniyatiga egamiz. Bunda tengsizlikni tenglik bilan almashtiriladi (va natijada ham bilan almashtirilishi kerak bo'ladi).

Bessel tengsizligi quyidagi, har qanday natural son n uchun bajariladigan ayniyatdan kelib chiqadi

Yana qarang

tahrir
  • Koshi-Shvarz tengsizligi
  • Parseval teoremasi

Manbalar

tahrir
  1. "Bessel inequality - Encyclopedia of Mathematics".
  2. Saxe, Karen (2001-12-07). Beginning Functional Analysis. Springer Science & Business Media. p. 82. ISBN 9780387952246.
  3. Zorich, Vladimir A.; Cooke, R. (2004-01-22). Mathematical Analysis II. Springer Science & Business Media. pp. 508-509. ISBN 9783540406334.
  4. Vetterli, Martin; Kovačević, Jelena; Goyal, Vivek K. (2014-09-04). Foundations of Signal Processing. Cambridge University Press. p. 83. ISBN 9781139916578.

Havolalar

tahrir

 Bessel's Inequality the article on Bessel's Inequality on MathWorld.

Ushbu maqola Creative Commons Attribution/Share-Alike litsenziyasi ostida litsenziyalangan PlanetMath-dagi Bessel tengsizligidan olingan materiallarni o'z ichiga oladi.

  1. „Bessel inequality - Encyclopedia of Mathematics“.
  2. Saxe, Karen. Beginning Functional Analysis (en). Springer Science & Business Media, 2001-12-07 — 82-bet. ISBN 9780387952246. 
  3. Zorich, Vladimir A.. Mathematical Analysis II (en). Springer Science & Business Media, 2004-01-22 — 508–509-bet. ISBN 9783540406334. 
  4. Vetterli, Martin. Foundations of Signal Processing (en). Cambridge University Press, 2014-09-04 — 83-bet. ISBN 9781139916578.