Cauchy–Schwarz (o'qilishi: Koshi-Shvarz) tengsizligi (ba'zida Cauchy–Bunyakovsky–Schwarz (o'qilishi: Koshi-Bunyakovskiy-Shvarz) tengsizligi) matematikadagi eng muhim va keng qo'llaniladigan tengsizliklardan biri sifatida qaraladi.

Yig'indilar uchun tengsizlik Augustin-Louis Cauchy tomonidan 1821-yilda nashr etilgan. Integrallar uchun mos keladigan tengsizlik Viktor Bunyakovsky tomonidan 1859-yilda va Hermann Schwarz tomonidan 1888-yilda nashr etilgan. Schwarz integral ko'rinishdagi tengsizlikning zamonaviy isbotini keltirgan.

Tengsizlik bayoni

tahrir

Cauchy-Schwarz tengsizligi barcha ichki ko'paytma aniqlangan fazodagi barcha   va   vektorlar uchunAndoza:NumBlktengsizlikning o'rinli ekanligini ta'kidlaydi, bu yerda   ichki ko'paytma hisoblanadi. Ichki ko'paytmalarga misollar haqiqiy va kompleks nuqtali ko'paytmalarni o'z ichiga oladi. Ichki ko'paytma mavzusidagi misollarga qarang. Har bir ichki ko'paytma kanonik yoki keltirilgan norma deb ataladigan normani keltirib chiqaradi, bu yerda   vektorning vektor normasi quyidagicha belgilanadi va aniqlanadi: Bu norma va ichki ko'paytma   aniqlovchi shart bilan o'zaro bog'langan bo'lib, bu yerda   har doim nomanfiy haqiqiy son bo'ladi (hattoki ichki ko'paytma kompleks qiymatli bo'lsa ham). Yuqoridagi tengsizlikning har ikki tomonining kvadrat ildizini olib, Cauchy-Schwarz tengsizligini uning koʻproq tanish bo'lgan koʻrinishida yozish mumkin:Andoza:NumBlkBundan tashqari, tengsizlikning ikkala tomoni faqat va faqat   va   lar bir-biriga chiziqli bog'liq bo'lsagina bir-biriga teng bo'ladi.

Maxsus holatlar

tahrir

Sedrakyan lemmasi - musbat haqiqiy sonlar

tahrir

R 2 - Tekislik

tahrir

R n - n -o'lchovli Evklid fazosi

tahrir

C n - n -o'lchovli Kompleks fazo

tahrir

Qo'llanilishi

tahrir

Tahlil

tahrir

Geometriya

tahrir

Ehtimollar nazariyasi

tahrir

Dalillar

tahrir

Haqiqiy ichki ko'paytmali fazolar uchun

tahrir

Nuqtali ko'paytma uchun dalil

tahrir

Ixtiyoriy vektor fazolar uchun

tahrir

Isbot 1

tahrir

Let   and   so that   and   Then  

This expansion does not require   to be non-zero; however,   must be non-zero in order to divide both sides by   and to deduce the Cauchy-Schwarz inequality from it. Swapping   and   gives rise to:   and thus  

Isbot 2

tahrir

Umumlashtirishlar

tahrir

Yana qarang

tahrir

Manbalar

tahrir

Manbalar

tahrir
  • Aldaz, J. M.; Barza, S.; Fujii, M.; Moslehian, M. S. (2015), „Advances in Operator Cauchy—Schwarz inequalities and their reverses“, Annals of Functional Analysis, 6 (3): 275–295, doi:10.15352/afa/06-3-20
  • Bunyakovsky, Viktor (1859), „Sur quelques inegalités concernant les intégrales aux différences finies“ (PDF), Mem. Acad. Sci. St. Petersbourg, 7 (1): 6
  • Cauchy, A.-L. (1821), „Sur les formules qui résultent de l'emploie du signe et sur > ou <, et sur les moyennes entre plusieurs quantités“, Cours d'Analyse, 1er Partie: Analyse Algébrique 1821; OEuvres Ser.2 III 373-377
  • Dragomir, S. S. (2003), „A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities“, Journal of Inequalities in Pure and Applied Mathematics, 4 (3): 142 pp, 2008-07-20da asl nusxadan arxivlandi, qaraldi: 2022-06-19 {{citation}}: More than one of |archivedate= va |archive-date= specified (yordam); More than one of |archiveurl= va |archive-url= specified (yordam)
  • Grinshpan, A. Z. (2005), „General inequalities, consequences, and applications“, Advances in Applied Mathematics, 34 (1): 71–100, doi:10.1016/j.aam.2004.05.001
  • Andoza:Halmos A Hilbert Space Problem Book 1982
  • Kadison, R. V. (1952), „A generalized Schwarz inequality and algebraic invariants for operator algebras“, Annals of Mathematics, 56 (3): 494–503, doi:10.2307/1969657, JSTOR 1969657.
  • Lohwater, Arthur (1982), Introduction to Inequalities, Online e-book in PDF format
  • Paulsen, V. (2003), Completely Bounded Maps and Operator Algebras, Cambridge University Press.
  • Schwarz, H. A. (1888), „Über ein Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung“ (PDF), Acta Societatis Scientiarum Fennicae, XV: 318
  • Andoza:Springer
  • Steele, J. M. (2004), The Cauchy–Schwarz Master Class, Cambridge University Press, ISBN 0-521-54677-X

Havolalar

tahrir