Foydalanuvchi:Husanboy Yo'ldoshov/qumloq

Magnit maydon kuchi - bu maydonning ma'lum bir hududida magnit maydon intensivligining o'lchovidir. H sifatida ifodalangan magnit maydon kuchi odatda Xalqaro birliklar tizimi (SI) tomonidan belgilangan har bir metr uchun amperda (A/m) o'lchanadi. Amper va metr (yoki metr) SI ning aniqlovchi doimiylaridan tuzilgan SI tayanch birliklari. Amper elektr tokining o'lchovidir, metr esa uzunlik o'lchovidir.

Magnit maydon intensivligi deb ham ataladigan magnit maydon kuchi ba'zan A / m emas, balki [1]ersted (Oe) bilan o'lchanadi. Oersted Gauss birliklari tizimining bir qismi bo'lib, u santimetr-gram-soniya (CGS) tizimiga asoslangan. Bitta Oe 79,577472 A/m ga, bitta A/m esa 0,012566 Oe ga teng.

Magnit maydon kuchi magnit maydonni o'lchashning ikki usulidan biridir. Boshqa yo'l - magnit oqim zichligi yoki magnit induksiya. Magnit oqimining zichligi B sifatida ifodalanadi va tesla (T) da o'lchanadi. Tesla kvadrat metrga bir veberga teng (Vb/m2). Weber magnit oqimining SI birligidir. Gauss birliklarida magnit oqimining zichligi gaussda (G yoki Gs) o'lchanadi. Bir tesla 10 000 gaussga teng.

Magnit maydon kuchi va oqim zichligi

Magnit maydon kuchi va magnit oqim zichligi bir-biri bilan bevosita bog'liq. Bu munosabatni B = mH formulasi orqali ifodalash mumkin. Yunoncha Mu (m) harfi magnit o'tkazuvchanlikni ifodalaydi, bu metr boshiga henri (H/m) bilan o'lchanadi. O'tkazuvchanlik - bu moddaning qo'llaniladigan magnit maydonga qanday ta'sir qilishining o'lchovidir.

Elektr toki o'tkazgichdan o'tganda, bu o'tkazgich atrofida magnit maydon hosil bo'ladi. Maydonning kuchi bir nechta omillarga, jumladan, oqim miqdoriga bog'liq. Agar siz oqimni oshirsangiz, magnit maydon kuchi ham ortadi; agar siz oqimni kamaytirsangiz, maydon kuchi kamayadi. Supero'tkazuvchilar shakli magnit maydon kuchiga ham ta'sir qiladi. Misol uchun, o'tkazgich to'g'ri chiziq emas, balki lasan shaklida shakllanishi mumkin. Solenoid o'ralgan o'tkazgichning keng tarqalgan namunasidir. Agar siz o'tkazgichdagi bobinlar sonini uning uzunligini o'zgartirmasdan ko'paytirsangiz, magnit maydon kuchini ham oshirasiz.

Magnit maydon kuchi va oqim zichligi

Magnit maydon kuchi va magnit oqim zichligi bir-biri bilan bevosita bog'liq. Bu munosabatni B = mH formulasi orqali ifodalash mumkin. Yunoncha Mu (m) harfi magnit o'tkazuvchanlikni ifodalaydi, bu metr boshiga henri (H/m) bilan o'lchanadi. O'tkazuvchanlik - bu moddaning qo'llaniladigan magnit maydonga qanday ta'sir qilishining o'lchovidir.

Elektr toki o'tkazgichdan o'tganda, bu o'tkazgich atrofida magnit maydon hosil bo'ladi. Maydonning kuchi bir nechta omillarga, jumladan, oqim miqdoriga bog'liq. Agar siz oqimni oshirsangiz, magnit maydon kuchi ham ortadi; agar siz oqimni kamaytirsangiz, maydon kuchi kamayadi. Supero'tkazuvchilar shakli magnit maydon kuchiga ham ta'sir qiladi. Misol uchun, o'tkazgich to'g'ri chiziq emas, balki lasan shaklida shakllanishi mumkin. Solenoid o'ralgan o'tkazgichning keng tarqalgan namunasidir. Agar siz o'tkazgichdagi bobinlar sonini uning uzunligini o'zgartirmasdan ko'paytirsangiz, magnit maydon kuchini ham oshirasiz.Magnit maydon magnit maydonning kattaligi va yo'nalishini ifodalovchi bir qator magnit maydon chiziqlari sifatida ko'rsatilishi mumkin. Ushbu chiziqlarning naqshlari elektr tokini o'tkazuvchi o'tkazgichning shakliga bog'liq. Masalan, to'g'ri o'tkazgich atrofidagi maydon chiziqlari konsentrik doiralar qatorida o'tkazgich bo'ylab har bir nuqtadan tarqaladi. Biroq, g'altakning atrofidagi maydon chiziqlari magnitnikiga o'xshash naqsh hosil qiladi, shimoldan janubiy qutblarga va bobinning markazidan o'tib, maydon chiziqlari eng zich joylashgan joyda aylanadi.

Magnit maydonning kuchi maydon chiziqlarining zichligiga mos keladi. To'g'ri o'tkazgichda maydon chiziqlari o'tkazgichga eng yaqin joyda joylashgan, shuning uchun magnit maydon eng kuchli bo'ladi. Aksincha, chiziqlar o'tkazgichdan qanchalik uzoqroq bo'lsa, ko'proq tarqaladi, bu esa kuchsizroq maydon kuchini ko'rsatadi. O'ralgan o'tkazgichda chiziqlar eng zichligi bo'lakning markazida joylashgan bo'lib, u erda maydon kuchi eng katta bo'ladi. Maydon chiziqlari g'altakning tashqarisida kamroq zichroq bo'lib, ular o'tkazgichdan qanchalik uzoqroq bo'lsa, u erda maydon kuchi eng zaif bo'lgan joyda ingichka bo'lib qoladi.

Muayyan vaqt ichida ma'lum bir sirt orqali o'tadigan magnit maydon chiziqlarining umumiy soni magnit oqim deb ataladi. U sirtdan o'tadigan magnit maydon chiziqlari soniga to'g'ridan-to'g'ri proportsionaldir. Chiziqlar qanchalik konsentrlangan bo'lsa, oqim zichligi shunchalik katta bo'ladi. Agar siz magnit maydonning intensivligini oshirsangiz, oqimning yuqori darajasini ko'rsatadigan maydon chiziqlari sonini oshirasiz. Oqim tezligiga sirt maydonining kattaligi va maydon chiziqlariga nisbatan sirt burchagi ham ta'sir qiladi. 1-rasmda ikkita sirt ko'rsatilgan. O'ngdagi chap tomondagidan ancha katta, ammo maydon kuchi ikkala holatda ham bir xil. Natijada, o'ngdagi sirt yuqori oqim tezligiga ega.

Kompyuterning qattiq disklarida ma'lumotlarni saqlash uchun magnitlardan foydalanish tufayli magnit maydon kuchini tushunish muhimdir. (Jeneratorlar, dinamiklar va televizorlarni o'z ichiga olgan turli xil boshqa qurilmalar ham magnit yoki elektromagnitlarga tayanadi.) O'zaro bog'langan flesh-xotira mikrosxemalar substratida ma'lumotlarni o'qish va yozishni ta'minlaydigan qattiq holat drayvlari (SSD) tezroq, qattiq disklarga nisbatan mustahkamroq muqobil, garchi qattiq disklar hali ham o'z o'rni va kuchli bozor mavjudligiga ega.

What is magnetic field strength?

tahrir

Magnetic field strength is a measure of the intensity of a magnetic field in a given area of that field. Represented as H, magnetic field strength is typically measured in amperes per meter (A/m), as defined by the International System of Units (SI). Ampere and meter (or metre) are SI base units constructed from the SI's defining constants. Ampere is the measure of electric current, and meter is the measure of length.

Magnetic field strength, also called magnetic field intensity, is sometimes measured in oersted (Oe) rather than A/m. The oersted is part of the Gaussian system of units, which is based on the centimeter-gram-second (CGS) system. One Oe is equal to 79.577472 A/m, and one A/m is equal to 0.012566 Oe.

Magnetic field strength is one of two ways a magnetic field can be measured. The other way is magnetic flux density, or magnetic induction. Magnetic flux density is represented as B and measured in tesla (T). A tesla is equal to one weber per square meter (Wb/m2). Weber is the SI unit of magnetic flux. In Gaussian units, magnetic flux density is measured in gauss (G or Gs). One tesla is equal to 10,000 gauss.

Magnetic field strength and flux density

tahrir

Magnetic field strength and magnetic flux density are directly related to each other. This relationship can be expressed through the formula B = μH. The Greek letter Mu (μ) represents magnetic permeability, which is measured in henry per meter (H/m). Permeability is a measure of how a substance responds to an applied magnetic field.

When electric current runs through a conductor, a magnetic field forms around that conductor. The strength of the field depends on multiple factors, including the amount of current. If you increase the current, the magnetic field strength also increases; if you decrease the current, the field strength decreases. The shape of the conductor also affects magnetic field strength. For example, a conductor might be formed into a coil rather than a straight line. A solenoid is a common example of a coiled conductor. If you increase the number of coils in the conductor, without changing its length, you'll also increase the magnetic field strength.

A magnetic field can be visualized as a series of magnetic field lines that represent the magnitude and direction of the magnetic field. The pattern of those lines depends on the shape of the conductor carrying the electric current. For example, field lines around a straight conductor radiate out from each point along the conductor in a series of concentric circles. However, the field lines around a coil form a pattern similar to that of a magnet, circling around from the north to south poles and through the center of the coil, where the field lines are at their densest.

The strength of a magnetic field corresponds to the density of the field lines. In a straight conductor, the field lines are at their densest nearest the conductor, so that is where the magnetic field is at its strongest. Conversely, the lines are more spread out the farther they get from the conductor, indicating a weaker field strength. In a coiled conductor, the lines are at their densest at the center of the coil, where the field strength is at its greatest. The field lines are less dense outside the coil and continue to thin out the further away they are from the conductor, where the field strength is at its weakest.

The total number of magnetic field lines penetrating through a defined surface in a specific amount of time is called the magnetic flux. It is directly proportional to the number of magnetic field lines that pass through the surface. The more concentrated the lines, the greater the flux density. If you increase the intensity of the magnetic field, you increase the number of field lines, indicating a greater level of flux. The rate of flux is also affected by the size of the surface area and the angle of the surface in relation to the field lines. Figure 1 shows two surfaces. The one on the right is much larger than the one on the left, but the field strength is the same in both cases. As a result, the surface on the right has a higher rate of flux.

Understanding magnetic field strength matters because of the use of magnets to store data on computer hard drives. (A variety of other devices, including generators, speakers and televisions, also rely on magnets or electromagnets.) Solid-state drives (SSDs), which read and write data on a substrate of interconnected flash memory chips, have emerged as a faster, more durable alternative to hard drives, though hard drives still have a role and a strong market presence.

  1. {{Veb manbasi}} andozasidan foydalanishda sarlavha= parametrini belgilashingiz kerak. „“.