Tez saralash(quicksort) algoritmi - Charlz Xoar tomonidan yaratilgan mashhur saralash algoritmidir. Ushbu algoritm n ta elementdan iborat massivni eng uzogʻi bilan O(n2) vaqtda saralaydi. Biroq algoritm bajarilish tezligining matematik kutilmasi O(n log n) ga teng va u boshqa shunday tezlikda bajariluvchi algoritmlardan tezroq ishlaydi.

Ishlash printsipi

tahrir
  1. Massivda ixtiyoriy tayanch element tanlaymiz.
  2. Keyin undan kichik yoki teng elementlarni uning chap tomoniga, katta elementlarni oʻng tomoniga oʻtkazamiz.
  3. 1-2-chi qadamlarni tayanch elementning oʻng va chap tomonlaridagi elementlar uchun qoʻllaymiz.

Algorimning 2 qadami turlicha boʻlib uning bir nechta realizatsiyalari mavjud. Ayni shu 2 qadamda elementlarni joylashtirish algoritmi tufayli algoritm saralash algoritmlari ichida eng tez ishlaydiganlaridan biridir.

Tez saralash (QuickSort) algoritmining javascriptdagi realizatsiyasi

tahrir
function QuickSort(A, p, r)
{
        if(p<r)
        {
                var q = Partition(A, p, r);
                QuickSort(A, p, q);
                QuickSort(A, q+1, r);
        }
}
function Partition(A, p, r)
{
        var x = A[r];
        var i=p-1;
        for(var j=p; j<=r ;j++ )
        {
                if(A[j] <= x)
                {
                        i++;
                        var temp = A[i];
                        A[i] = A[j];
                        A[j] = temp;
                }
        }
        return i<r ?i : i-1;
}
void swap(int *a, int *b)
{ 
  int t=*a; *a=*b; *b=t; 
}
void sort(int arr[], int beg, int end) 
/* sort elements arr[beg],...,arr[end-1]*/
{
  int middle,l,r;
  if (end > beg + 1) 
  {
    middle=arr[(beg+end)/2];
    l=beg;r=end;
    while (l < r) 
    {
      while (arr[l]<middle) l++;
      while (arr[r]>middle) r--;
      if (l<r)
      {
        swap(arr[l],arr[r]);
        l++;r--;
      }
    }
    sort(arr, beg, r);
    sort(arr, l, end);
  }
}
#include <functional>
#include <algorithm>
#include <iterator>

template< typename BidirectionalIterator, typename Compare >
void quick_sort( BidirectionalIterator first, BidirectionalIterator last, Compare cmp ) {
  if( first != last ) {
    BidirectionalIterator left  = first;
    BidirectionalIterator right = last;
    BidirectionalIterator pivot = left++;

    while( left != right ) {
      if( cmp( *left, *pivot ) ) {
         ++left;
      } else {
         while( (left != --right) && cmp( *pivot, *right ) )
           ;
         std::iter_swap( left, right );
      }
    }

    --left;
    std::iter_swap( first, left );

    quick_sort( first, left, cmp );
    quick_sort( right, last, cmp );
  }
}

template< typename BidirectionalIterator >
inline void quick_sort( BidirectionalIterator first, BidirectionalIterator last ) {
  quick_sort( first, last,
    std::less_equal< typename std::iterator_traits< BidirectionalIterator >::value_type >()
  );
}
import java.util.Comparator;
import java.util.Random;

public class Quicksort {
    public static final Random RND = new Random();

    private void swap(Object[] array, int i, int j) {
        Object tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }

    private int partition(Object[] array, int begin, int end, Comparator cmp) {
        int index = begin + RND.nextInt(end - begin + 1);
        Object pivot = array[index];
        swap(array, index, end);	
        for (int i = index = begin; i < end; ++ i) {
            if (cmp.compare(array[i], pivot) <= 0) {
                swap(array, index++, i);
            }
        }
        swap(array, index, end);	
        return (index);
    }

    private void qsort(Object[] array, int begin, int end, Comparator cmp) {
        if (end > begin) {
            int index = partition(array, begin, end, cmp);
            qsort(array, begin, index - 1, cmp);
            qsort(array, index + 1,  end,  cmp);
        }
    }

    public void sort(Object[] array, Comparator cmp) {
        qsort(array, 0, array.length - 1, cmp);
    }
}
def qsort(L):
   if L == []: return []
   return qsort([x for x in L[1:] if x< L[0]]) + L[0:1] + \
          qsort([x for x in L[1:] if x>=L[0]])
DEFINE sort == [small][]
               [uncons [>] split]
               [[swap] dip cons concat] binrec .
function quicksort($seq) {
  if(count($seq)>1) {
    $k = $seq[0];
    $x = array();
    $y = array();
    for($i=1; $i<count($seq); $i++) {
      if($seq[$i] <= $k) {
        $x[] = $seq[$i];
      } else {
        $y[] = $seq[$i];
      }
    }
    $x = quicksort($x);
    $y = quicksort($y);
    return array_merge($x, array($k), $y);
  } else {
    return $seq;
  }
}
 sort :: (Ord a)   => [a] -> [a]
 
 sort []           = []
 sort (pivot:rest) = sort [y | y <- rest, y < pivot]
                     ++ [pivot] ++ 
                     sort [y | y <- rest, y >=pivot]
split(H, [A|X], [A|Y], Z) :-
  order(A, H), split(H, X, Y, Z).
split(H, [A|X], Y, [A|Z]) :-
  not(order(A, H)), split(H, X, Y, Z).
split(_, [], [], []).

quicksort([], X, X).

quicksort([H|T], S, X) :-
  split(H, T, A, B),
  quicksort(A, S, [H|Y]),
  quicksort(B, Y, X).
def sort(array)
  return [] if array.empty?
  left, right = array[1..-1].partition { |y| y <= array.first }
  sort(left) + [ array.first ] + sort(right)
end
fun quicksort lt lst =
  let val rec sort =
    fn [] => []
     | (x::xs) =>
        let
          val (left,right) = List.partition (fn y => lt (y, x)) xs
        in sort left @ x :: sort right
        end
  in sort lst
end