Tekis o‘zgaruvchan harakat (a=const)

Tekis oʻzgaruvchan harakat — bu uning tezlanishi doimiy modul va oʻzgarmas yoʻnalishda sodir boʻlgan jismning harakati[1].

Bu holda tezlik quyidagi formula bilan aniqlanadi:

,

bu yerda tananing boshlangʻich tezligi,  — vaqt. Traektoriya parabola yoki toʻgʻri chiziqning bir qismiga oʻxshaydi.

Bunday harakatga misol qilib burchak ostida tashlangan toshning parvozini keltirish mumkin bir xil tortishish maydonida ufqqa: tosh doimiy tezlanish bilan uchadi vertikal pastga ishora qiladi.

Bir xil tezlashtirilgan harakatning alohida holati bir xil darajada sekin, vektorlar Va ga qarama-qarshidir va tezlik moduli vaqt oʻtishi bilan bir xilda kamayadi (tosh misolida u amalga oshiriladi koʻtarganda).

Bir tekis tezlanuvchan harakatning tabiati

tahrir

Bir tekis tezlashtirilgan harakat tezlanish vektorlarini oʻz ichiga olgan tekislikda sodir boʻladi   va boshlangʻich tezligi   . Shuni hisobga olgan holda   (Bu yerga   radius vektori), traektoriya ifoda bilan tavsiflanadi:

  .

Muayyan vaqt oraligʻida bu parabolaning bir qismidir, agar vektorlar parallel boʻlsa (yaʼni.   Va   toʻgʻri chiziqqa aylanadi.

Koordinatalarning har biri uchun aytaylik  , tuzilishi jihatidan oʻxshash iboralar yozilishi mumkin:

  ,

bu yerda     oʻqi boʻylab tezlanish komponentidir,   esa hozirgi   vaqtda moddiy nuqtaning radius vektori ( ,  ,   — birlik vektorlar).

Tosh misolida  , tezlashtirish komponentlari  ,  , dastlabki tezlik  ,  ,  , unda  , bu degani  .

Harakat va tezlik

tahrir

Bir tekis tezlashtirilgan harakatda, masalan, tezlikning har qanday komponenti   vaqtga chiziqli bogʻliq:

  .

Bunday holda, siljish oʻrtasida quyidagi bogʻliqlik sodir boʻladi ( ) koordinata boʻylab   va bir xil koordinata boʻylab tezlik:

  .

Buning uchun ifodani olish mumkin   -tananing maʼlum boʻlgan oxirgi tezligining komponenti   -boshlangʻich tezlik va tezlanishning komponentlari:

  .

Agar  , Bu  , A   .

Ofset uchun ifodalar  ,   va koordinatalar boʻyicha tezlik komponenti   Va   uchun xuddi shunday shaklni oling   Va  , lekin belgi   bilan hamma joyda almashtiriladi   yoki   .

Hammasi boʻlib, Pifagor teoremasiga koʻra, siljish boʻladi

  ,

va oxirgi tezlik moduli sifatida quyidagi topiladi:

  .

Bir tekis tezlashtirilgan harakat cheksiz sodir boʻlishi mumkin emas: bu maʼlum bir vaqtdan boshlab, degan maʼnoni anglatadi.  , tana tezligi moduli   vakuumdagi yorugʻlik tezligidan oshib ketadi  , bu nisbiylik nazariyasi tomonidan inkor etiladi.

Amalga oshirish sharti

tahrir

Bir tekis tezlashtirilgan harakat jismga (moddiy nuqta) doimiy kuch taʼsirida amalga oshiriladi.  , odatda bir xil tortishish yoki elektrostatik maydonda, agar tananing tezligining qiymati yorugʻlik tezligidan sezilarli darajada past boʻlsa   . Keyin, Nyutonning ikkinchi qonuniga koʻra, tezlanish boʻladi

 

bu yerda   koʻrsatilgan tana vazni. Tosh misolida,   tortishish kuchi rolini oʻynaydi.

Agar tananing tezligi yorugʻlik tezligi bilan taqqoslanadigan boʻlsa, u holda yozma shaklda Nyuton qonuni qoʻllanilmaydi. Bunday holda, doimiy kuch boʻlgan taqdirda, nisbiy jihatdan bir xil tezlashtirilgan harakat sodir boʻladi, bunda faqat oʻz tezlanishi doimiy boʻladi va tezlik   chegarasiga yaqinlashganda, belgilangan ISO dagi tezlanish vaqt oʻtishi bilan nolga yaqinlashadi.

Nuqta kinetik energiya teoremasi

tahrir

Kinetik energiya teoremasini isbotlashda bir tekis tezlashtirilgan harakat uchun joy almashtirish formulasidan foydalaniladi. Buning uchun tezlanishni chap tomonga oʻtkazish va ikkala qismni tana massasiga koʻpaytirish kerak:

  .

Koordinatalar uchun shunga oʻxshash munosabatlarni yozish   Va   va barcha uchta tenglikni yigʻib, biz nisbatni olamiz:

  .

Chap tomonda doimiy natijaviy kuchning ishi  , va oʻngda — harakatning oxirgi va dastlabki momentlarida kinetik energiyalar farqi. Olingan formula bir tekis tezlashtirilgan harakat holati uchun nuqtaning kinetik energiyasi haqidagi teoremaning matematik ifodasidir[2].

Teng oʻzgaruvchan harakat

tahrir

Teng oʻzgaruvchan — tezlanishning tangensial (tezlikka parallel) komponenti doimiy boʻlgan harakatdir[3]. Bunday harakat bir tekis tezlashmaydi, faqat toʻgʻri chiziqda sodir boʻlgan holatlar bundan mustasno, lekin matematik jihatdan xuddi shunday koʻrib chiqilishi mumkin.

Bunday holda, umumlashtirilgan koordinata kiritiladi  , koʻpincha yoʻl deb ataladi, oʻtgan traektoriya uzunligiga mos keladi (egri yoyi uzunligi). Shunday qilib, formula quyidagicha boʻladi:

  ,

bu yerda   — tangensial tezlashtirish, tananing tezligi modulini oʻzgartirish uchun „mas’ul“. Tezlik uchun biz quyidagilarni olamiz:

  .

bunda   bizda doimiy modul tezligi bilan harakat bor.

Baʼzida teng oʻzgaruvchan sifat egri chiziqli bir xil tezlashtirilgan bilan almashtiriladi, bu chalkashlikni keltirib chiqaradi, chunki, aytaylik, tortishish maydonidagi egri chiziq (parabola) boʻylab toshning bir tekis tezlashtirilgan harakati bir xil darajada oʻzgaruvchan emas.

Manbalar

tahrir
  1. Сивухин Д. В.. Общий курс физики. М.: Физматлит, 2005 — 37-bet. ISBN 5-9221-0225-7. 
  2. Тарг С. М.. Краткий курс теоретической механики, 11-е изд, М.: «Высшая школа», 1995 — 214-bet. ISBN 5-06-003117-9. 
  3. Sm. Fizicheskiy ensiklopedicheskiy slovar — M.: Sovetskaya ensiklopediya, pod. red. A. M. Proxorova (1983), statya „Ravnoperemennoe dvijenie“, str. 602.

Adabiyotlar

tahrir
  • Sivuxin — „Umumiy Fizika kursi“ 1-tom