Pi
π („pi“, deb talaffuz qilinadi) soni — aylana uzunligining diametriga nisbati; irratsional son va transsendent (yaʼni butun koeffitsiyentli algebraik tenglama ildizi boʻlmagan) son.
Aylana uzunligi, doira yuzi, aylanma jismlar hajmini hisoblashda qoʻllanadi[1].
π soni aylana uzunligining uning diametriga nisbati sifatida avvalo geometriyada paydo boʻlgan, biroq hozirda u matematikaning boshqa boʻlimlarida ham ishlatiladi. π soni irratsional hamda transsendentdir.
Bu sonni grek xarfi π bilan birinchi bol`ib ingliz matematigi Jonson belgilashni boshlagan (1706), Leonard Eylerning mehnatlaridan soʻng esa bunday belgilash mashhur boʻlib ketdi.
Bunday belgilash yunoncha — periferiya soʻzining bosh harfidan olingan.
Soni
tahrir3.14159265358979323846264338327950288419716939937510…[2]
Tarixi
tahrirπ irratsional sonini na butun son, na arifmetik kasr sifatida aniq ifodalash mumkin emas. cheksiz va davriy boʻlmagan oʻnli kasrlar bilan ifodalanadi. π soni aylana perimetrining uning diametriga nisbatidir. Qadimgi yunon matematigi Arximed π ning qiymatini uchta kasrgacha hisoblagan. Klavdiy Ptolemey π ning qiymatini toʻrtinchi kasrgacha koʻrsatdi. Oʻsha davrda π ning qiymati ekvivalentlarda ifodalangan, shundan beri oʻnli kasr yoʻq edi. Keyingi 1500 yil davomida gʻarbiy dunyoda π ning aniqroq qiymatini olishda muvaffaqiyatga erishilmadi. Biroq, ayni paytda qadimgi Xitoyda, aksincha, π sonining qiymatini hisoblash sohasida sezilarli yutuqlar mavjud edi. Qadimgi Xitoy matematiklari π sonining taxminiy qiymatini olish uchun barcha usullarni sinab koʻrdilar. Usullardan biri quyidagicha edi: aylana chizish, unga muntazam koʻpburchak yozish. Koʻpburchakning qanchalik koʻp tomonlari boʻlsa, koʻpburchakning maydoni va doira maydoni oʻrtasidagi farq shunchalik kichik boʻladi. Doira maydoni πr² formulasi bilan ifodalanadi, bu yerda r radiusini oʻlchash orqali aniq hisoblash mumkin. Shunday qilib, koʻpburchakning maydoni aylananing maydoniga yaqinlashganda, π sonining taxminiy qiymati olinadi. Arximed aylana ichiga muntazam 96 burchakli burchakni yozdi, natijada shunday qiymat hosil boʻldi: 3,140 <π< 3,142. Qadimgi xitoyliklarning hisoblash usuli Arximed usulidan farq qilmadi, lekin ular aniqroq qiymat oldilar. Vey va Jin sulolalarining oʻzgarishi davrida yashagan Lyu Xuy xuddi shu usul bilan qiymatni hisoblab chiqdi. Lyu Xuy davrida odamlar aylana perimetrining uning diametriga nisbati 3:1 ga teng deb hisoblashgan, bu aylana ichiga chizilgan muntazam 6 burchakli perimetrning doira diametriga nisbatini bildiradi va π qiymati emas. 3:1 nisbatga asoslangan doiraning hisoblangan maydoni haqiqiy maydon emas. Oʻsha paytda odamlar doira maydoni „yarim perimetr x diametr“ formulasi yordamida hisoblanishini allaqachon bilishgan. Diametri toʻgʻri chiziqdir, nazariy jihatdan uning qiymati aniq oʻlchov bilan hisoblanishi mumkin. Shunday qilib, aylananing maydonini hisoblash uchun aylananing maydonini bilish kerak. Biroq, doira egri chiziq boʻlib, uni toʻgʻridan-toʻgʻri oʻlchash mumkin emas. Shuning uchun, odamlar aylana perimetrini oʻlchash oʻrniga, oddiy 6-burchakni aylana ichiga sigʻdirish usulini oʻylab topishdi, ammo bu usul yechimda xatolikni keltirib chiqaradi. Egri chiziqni qanday qilib toʻgʻri chiziqqa aylantirish mumkin? Shu munosabat bilan, Liu Xui taʼkidladi: maʼlum bir doira ichiga yozilgan muntazam koʻpburchakning tomonlari sonining cheksiz koʻpayishi bilan uning tomonining uzunligi aylananing perimetriga intiladi. Shuning uchun aylana ichiga chizilgan muntazam koʻpburchak tomonlarining uzunligi aylananing perimetri oʻrnini bosuvchi boʻlib xizmat qiladi. Liu Xuining usuli „aylanani boʻlish“ deb ataladi. Liu Xui oʻz fikrini hayotga olib keldi: u π qiymatini hisoblash jarayonida „aylana boʻlinishi“ usulidan foydalangan. 6 burchakdan boshlab, u koʻpburchakning tomonlarini qayta-qayta oshirdi, buning natijasida u 12-burchak, 24-burchak, 48-burchak, 96-burchak va hatto 192-burchak. Shunday qilib, u π 3,141024 qiymatini oldi. Hisoblash paytida u „3.14“ qiymatini qoʻlladi. Dalil topish uchun u koʻpburchakning tomonlarini 3072 ga oshirdi. Shubhasiz, aylanaga chizilgan 3072 burchakli burchakning maydoni aylananing haqiqiy maydoniga yaqinroq. Shunday qilib, Liu Xui π qiymatini 3,1416 aniqlik bilan oldi, bu yunonlar tomonidan olingan natijalardan ancha aniqroqdir. Liu Xuz tomonidan olingan π qiymati bir vaqtlar dunyodagi eng aniq boʻlgan. Ammo Lyu Xuining hissasi nafaqat bu edi. U π qiymatini hisoblashning ilmiy usulini yaratib, matematikaning rivojlanishiga hissa qoʻshdi. Uning ishi tufayli π ning maʼnosini eng chuqur oʻrganish uchun mustahkam nazariy asos yaratildi. Agar avlodlar uning usuli boʻyicha hisoblashda davom etsalar, ular aniqroq qiymatga ega boʻlishadi. Bundan tashqari, uning nazariyasida chiziqli va egri chiziqli transformatsiyalar haqida koʻproq tushunarli fikr mavjud. Chiziqli va egri chiziqli oʻzgarishlar esa differentsial va integral hisoblash nazariyasining manbai hisoblanadi.
Tengliklar
tahrirπ soni qatnashgan koʻpgina tengliklar mavjud, masalan:
- Leybnits qatori:
- Eyler ayniyati:
Hisoblash usullari
tahrirπ sonini matematik hisoblab chiqarishni Arximed birinchi boʻlib taklif qilgan, deb taxmin etiladi. Buning uchun u aylana va unga tashqi va ichki chizilgan muntazam ko`pburchaklardan foydalangan. Aylana diametrini bir, deb hisoblab, Arximed tashqi chizilgan koʻpburchak perimetrini π sonining yuqori, ichki chizilgan koʻpburchak perimetrini esa quyi qiymati, deb koʻrar edi. Masalan, oltiburchak uchun (rasmga qarang) tengsizlik kelib chiqadi.
Arximed 96 burchakli muntazam koʻpburchak uchun tengsizlikni keltirib chiqardi.
Arab matematigi Gʻiyosiddin Jamshid ibn Maqsud al-Koshiy 1424-yilda yozib bitirgan „Aylana haqidagi traktat“ kitobida π sonini 17 xona aniqlikda keltiradi.
Ludolf van Seylen (1536—1610) π sonini 20 xona aniqlikda xisoblab chiqarish uchun oʻn yil sarfladi (1596 yilda chop etilgan „Aylana haqida“ („Van den Cirkel“) kitobida). Arximed usulini qoʻllab, u n burchakli koʻpburchak ishlatdi, bu yerda . Ludolf kitobini ushbu soʻzlar bilan yakunladi: „Kimning xohishi boʻlsa, davom ettiraversin“. Uning oʻlimidan soʻng qoʻlyozmalarida π soning yana 15 raqami topildi. Ludolf qabrtoshiga shu sonlarni yozib qoʻyishni vasiyat qilgan. Baʼzan π sonini „Ludolf soni“, deb ham atashadi.
Keyinchalik π sonini hisoblash uchun analitik usullardan foydalanishga oʻtishdi.
Birinchi samarali formulani 1706 yilda Jon Mechin (John Machin) taklif qildi:
Arktangensni Teylor qatoriga yoyib, π sonini katta aniqlikda topishga imkon eruvchi yaqinlashuvchi qatorga keltirish mumkin.
Ramanujan va Chudnovskiy algoritmlari esa yanada tezroq ishlaydi:
Transsendentlik va irratsionallik
tahrirπ soning irratsionalligini birinchi boʻlib Iohann Lambert 1767 yilda sonini uzluksiz kasrga yoyib isbotlagan. 1794 yilda Lejandr π va sonlarining irratsional ekanligiga yanada qatʼiy isbotlar keltirdi.
1882 yilda Kyonigberg, keyinchalik Myunhen universitetlari professori Ferdinand Lindeman π sonining transsendentligini isbotladi.Feliks Kleyn v 1894da bu isbotni soddalashtirdi.
π sonining transsendentligi aniqlangach, 2,5 ming yildan koʻp vaqt davom etib kelayotgan doira kvadraturasi masalasining Yevklid geometriyasida yechimi yoʻqligi koʻrinib, bu haqdagi bahslarga chek qoʻyildi.
Norasmiy bayramlar
tahrir„Pi Kuni“ (ingl. Pi Day) 14-martda nishonlanadi, chunki bu kun Amerika sanalar formatida 3.14 shaklida yoziladi, bu esa Pi sonining taqribiy qiymatidir.
Piga bogʻliq yana bir norasmiy bayram — „Taqribiy Pi Kuni“ (ingl. Pi Approximation Day) 22-iyulda oʻtkaziladi, chunki bu kun Yevropa sanalar formatida 22/7 shaklida yoziladi, bu esa Pi soning kasr shaklidagi taqribiy qiymatidir.
Yana qarang
tahrirManbalar
tahrir- ↑ OʻzME. Birinchi jild. Toshkent, 2000-yil
- ↑ Arndt & Haenel 2006, s. 240.
Havolalar
tahrir- π soni million xona aniqlikda (Wayback Machine saytida 2007-01-26 sanasida arxivlangan)
- π soni 200 million xona aniqlikda (Wayback Machine saytida 2011-08-29 sanasida arxivlangan)
- Pi Arbuz.uz da
- Pi-memory (Wayback Machine saytida 2008-03-19 sanasida arxivlangan)