Al-Mahaniy
Abu-Abdulloh Muhammad ibn Isa Mahaniy (ابوعبدالله محمد بن عیسی ماهانی) Mahanda (hozirgi Kermon, Eron) tugʻilgan Fors matematik va astronom boʻlib, Bagʻdodda Abbosiylari xalifaligi ostida ish olib borgan.[1][2] Uning mashhur matematikaga oid asarlari Yevklidning Elementlar,Arximedning Sfera va silindr toʻgʻrisida, hamda Menelausning Sphaerica asarlariga sharhlarni hamda ikkita mustaqil risolani oʻz ichiga oladi. U Arximed tomonidan qoʻyilgan, sferani muayyan nisbatdagi ikkita shaklga boʻlish masalasini yechmoqchi boʻladi, ammo bunga erisholmaydi. Bu masala keyinchalik 10-asr matematiki Abu Jaʼfar Xozin tomonidan yechiladi. Uning yagona saqlanib qolgan asari azimutni hisoblahs toʻgʻrisida. U astronomik kuzatuvlar olib borgani maʼlum va uning ketma-ket uchta oy tutilishining boshlanish vaqtlarini hisoblagani va ular yarim soat oraligʻigacha toʻgʻri boʻlgani aytiladi.
Al-Mahaniy | |
---|---|
ابوعبدالله محمد بن عیسی ماهانی | |
Tavalludi |
820 Mahan |
Vafoti |
880 |
Millati | Fors |
Sohasi | Matematika va astronomiya |
Tarjimai holi
tahrirTarixchilar manbalar kamligi tufayli al-Mahaniyning hayoti haqida juda kam maʻlumotga egalar. U Eronning Mahan qishlogʻida tugʻilgan(al-Mahaniy taxallusi shundan). U milodiy 9-asrda yoki hijriy 3-asrda ish olib borgan, 860-yillarda Bagʻdodda yashagan va 880-yilda vafot etgan. Ibn Yunusning Hakimiy Jadvallarida aytilishicha, u 853-866- yillar oraligʻida kuzatuvlar olib borgan. Aynan shu tarixchilarga uning hayot davrini aniqlash imkonini bergan.
Ishlari
tahrirMatematika
tahrirUning matematikaga doir asarlari geometriya, arifmetika va algebrani qamrab oladi. Uning baʻzi asarlari u astronomiyada duch kelgan masalalarga asoslangan boʻlishi mumkin. Ammo, 10-asr katalogi Kitab al-Fihristda al-Mahaniyning faqat matematikadagi hissalari haqida gapiriladi, astronomiyadagi emas.
Bundan tashqari u oʻz davrining matematik masalalari ustida ham ishlagan. U yunon matematik asarlari: Yevklidning Elementlar, Arximedning Sfera va silindr toʻgʻrisida hamda Menelausning Sphaerica asarlariga sharhlar yozadi. Oʻzining sharhlarida u tushuntirishlar qoʻshadi, ulardagi tilni "zamonaviy" terminlar orqali yangilaydi va baʻzi isbotlarni qayta ishlab chiqadi. Bundan tashqari u mustaqil risolasi - Fi al-Nisba ("Nisbatlar toʻgʻrisida")ni va yana bir parabolaning kvadratlashishi toʻgʻrisidagi risolani yozadi.
Uning Elementlar ustida yozilgan sharhlari I, V, X va XII boʻlimlarni qamrab oladi. Ammo faqatgina V boʻlim hamda X va XII boʻlimlarning baʻzi qismlarigina bizgacha yetib kelgan. V boʻlim sharhida u nisbat ustida ishlaydi va davomiy kasrlarga asoslangan va keyinchalik Al-Nayriziy tomonidan topilgan nisbat tavsifi toʻgʻrisidagi nazariyasini ilgari suradi.
X boʻlim sharhida u irratsional sonlar, shu jumladan ikkinchi darajali va uchinchi darajali irratsional sonlar ustida ham ish olib boradi. U Yevklidning faqatgina geometrik chiziqlarni oʻz ichiga olgan kattaliklar tavsifini butun sonlar va kasrlarni ratsional kattaliklar va ikkinchi darajali va uchinchi darajali ildizlarni irratsional kattaliklar sifatida kiritish orqali kengaytiradi. U kvadrat ildizni "yassi irratsionalliklar" va kubik ildizni "uch oʻlchamli irratsionalliklar" deb ataydi va ularning yigʻindilari yoki ayirmalarini, bundan tashqari bu ildizlarni ratsional kattaliklarga qoʻshganda yoki ulardan ayirgandagi qiymatlarni tasniflaydi. U X boʻlimni asl koʻrinishida geometrik kattaliklar yordamida emas, balki ratsional va irratsional kattaliklar yordamida izohlaydi.
Uning Sphaerica asariga doir sharhi I boʻlimni va II boʻlimning baʻzi qismlarini qamrab oladi va ularning hech biri bugungi kungacha yetib kelmagan. Uning asari keyinchalik Ahmad ibn Abi Said al-Haroviy (10-asr) tomonidan yangilanadi. Keyinchalik Nosiriddin Tusiy al-Mahaniy va al-Haroviyning asarlarini chetga surib, Abu Nasr Mansur asarlariga asoslangan Sphaerica sharhini yozadi. At-Tusiyning Sphaericaga sharhi arab olamida eng keng tarqalgan sharh hisoblanadi.
Al-Mahaniy Arximed tomonidan oʻrtaga qoʻyilgan Sfera va silindr toʻgʻrisida asarining ikkinchi boʻlimi, 4-bobidagi masala: sferani qanday qilib muayyan nisbatdagi ikkita hajmga boʻlish mumkin masalasini yechishga urinib koʻradi. Bu uni Islom olamida "Al-Mahaniy tenglamasi" deb nomlangan tenglama ga olib keladi. Ammo, keyinchalik Umar Xayyom zikr qilishicha, "uzoq mulohazadan soʻng" u nihoyat masala yechimini topishda muvaffaqiyatsizlikka uchraydi. Soʻngra, masala 10-asrgacha yechib boʻlmas deb hisoblanadi. Ammo Fors matematiki Abu Jaʼfar al-Xozin uni konus kesimlaridan foydalangan holda yechadi.
Astronomiya
tahrirUning quyosh va oy tutilishi toʻgʻrisidagi kuzatuvlari Ibn Yunusning (950-1009) zij (astronomik jadvallar)ida keltiriladi. Ibn Yunus Al-Mahanini zikr qilayotib u vaqtlarni usturlob bilan oʻlchaganini aytadi. Uning aytishicha, Al-Mahanining uch ketma-ket oy tutilishining boshlanish vaqtlari boʻyicha hisobi yarim soat oraligʻigacha aniq boʻlgan.
Bundan tashqari u Maqola fi maʼrifat as-samt li-aiy saʼa arodta va fi aiy maudi arodta ("Istalgan vaqt va istalgan joy uchun Azimutni oʻlchash toʻgʻrisida") nomli risola yozadi. Bu uning astronomiyaga oid saqlanib qolgan yagona asari. Unda al-Mahaniy azimutni oʻlchashning ikkita grafik va bitta arifmetik usulini keltiradi. Arifmetik usul sferik trigonometriyadagi kosinus qoidasiga toʻgʻri keladi va keyinchalik Al-Battoniy (858-929) tomonidan foydalaniladi.
U yana bir risola yozgan boʻlib, u Yulduzlar Kengliklari toʻgʻrisida deb nomlanadi, ammo u butunlay yoʻqotilgan. Undan keyin yashagan astronom Ibrohim ibn Sinon (908-946) keltirishicha, Al-Mahani quyosh soati yordamida assendantni oʻlchash toʻgʻrisida risola yozgan.
Manbalar
tahrir- Dold-Samplonius, Yvonne (2008). "Al-Mahani". in Helaine Selin. Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. New York: Springer. 141–142 b. doi:10.1007/978-1-4020-4425-0_9320. ISBN 978-1-4020-4559-2.
- Dold-Samplonius, Yvonne (2008b) [1970-80]. "Al-Māhānī, Abū 'Abd Allāh Muḥammad Ibn 'Īsā". Complete Dictionary of Scientific Biography. Charles Scribner's Sons and Encyclopedia.com. http://www.encyclopedia.com/doc/1G2-2830902765.html.
- Matvievskaya, Galina (1987). „The Theory of Quadratic Irrationals in Medieval Oriental Mathematics“. Annals of the New York Academy of Sciences. 500-jild, № 1. 253–277-bet. Bibcode:1987NYASA.500..253M. doi:10.1111/j.1749-6632.1987.tb37206.x.
- O'Connor, J.J.; Robertson, E.F (1999). "Abu Abd Allah Muhammad ibn Isa Al-Mahani". MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews. http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Mahani.html.
- Sarton, George (1927). "Al-Mahani". Introduction to the History of Science. Vol. I: From Homer to Omar Khayyam. Baltimore: William & Wilkins Company for Carnegie Institution of Washington. 597–598 b.
- Sesiano, J. (1993). "Muhammad b. Isa b. Ahmad al-Mahani". in C.E. Bosworth. The Encyclopaedia of Islam, New Edition. Vol. VII: Mif—Naz. Leiden and London: Brill. p. 405. ISBN 978-90-04-09419-2.
- Roshdi Rashed and Athanase Papadopoulos, Menelaus' Spherics: Early Translation and al-Mahani'/al-Harawi's version (Critical edition of Menelaus' Spherics from the Arabic manuscripts, with historical and mathematical commentaries), De Gruyter, Series: Scientia Graeco-Arabica, 21, 2017, 890 pages. ISBN 978-3-11-057142-4ISBN 978-3-11-057142-4
- ↑ On science and the construction of identities: remembering Ibn al-Haytham (965–1039) page 99 : "He neatly resolved the problem of al-Mahanī, a Persian mathematician of the 9th century"
- ↑ Meri, Josef W.. Medieval Islamic Civilization: An Encyclopedia (en). Routledge, 2005-10-31 — 32-bet. ISBN 978-1-135-45603-0.