Tuf, vulqon otilishi paytida ventilyatsiyadan chiqarilgan vulqon kulidan yasalgan jinslarning bir turi. Chiqib ketish va cho'kishdan so'ng, kul qattiq toshga aylanadi.[1][2] 75% dan ortiq kulni o'z ichiga olgan jinslar tuf, 25% dan 75% gacha kul bo'lgan jinslar esa tufli deb ta'riflanadi (masalan, tüfli qumtosh).[3] Qumli vulkanik materiallardan tashkil topgan tüf vulkanik qumtosh deb atash mumkin.[4]

Bandelier milliy yodgorligidan payvandlangan tüf, Nyu-Meksiko
Banditacciadagi qabrdan etrusk tüf bloklari
Germaniyadagi tuf uyi

Tuf nisbatan yumshoq jinsdir, shuning uchun u qadim zamonlardan beri qurilish uchun ishlatilgan.[5] Italiyada keng tarqalganligi sababli, rimliklar uni ko'pincha qurilish uchun ishlatishgan.[6] Rapa Nui xalqi undan Pasxa orolidagi moai haykallarining ko'pini yasash uchun foydalangan.[7]

Tufni magmatik yoki cho'kindi jins sifatida tasniflash mumkin. U odatda magmatik petrologiya kontekstida o'rganiladi, garchi u ba'zida sedimentologik atamalar yordamida tasvirlangan bo'lsa ham.


Vulkan kuli tahrir

Vulqon otilishi natijasida chiqariladigan materiallarni uch turga bo'lish mumkin:

  1. Vulkanik gazlar, asosan bug ', karbonat angidrid va oltingugurt birikmasidan hosil bo'lgan aralashma (haroratga qarab oltingugurt dioksidi, SO 2 yoki vodorod sulfid, H 2 S)
  2. Lava, magmaning paydo bo'lishi va sirt ustida oqishi paytidagi nomi
  3. Tephra, har qanday shakl va o'lchamdagi qattiq materialning zarralari havoga chiqariladi va tashlanadi
 
Yupqa kesmada ko'rinadigan tüfning yorug'lik mikroskopidagi tasviri (uzun o'lcham bir necha mm): O'zgartirilgan shisha parchalarining (kul bo'laklari) kavisli shakllari shisha qisman o'zgargan bo'lsa-da, yaxshi saqlanib qolgan. Shakllar kengayuvchi, suvga boy gaz pufakchalari haqida hosil bo'lgan.

Tefra issiq vulqon gazlarining tez kengayishi natijasida vulqon ichidagi magma parchalanishi natijasida hosil bo'ladi. Magma odatda portlaydi, chunki unda erigan gaz eritmadan tashqariga chiqadi, chunki u yuzaga oqganda bosim pasayadi. Ushbu shiddatli portlashlar vulqondan uchib ketishi mumkin bo'lgan material zarralarini hosil qiladi. 2 dan kichik qattiq zarralar mm diametrli (qum kattaligi yoki undan kichikroq) vulqon kullari deyiladi.[3]

Vulkanik kul yana mayda kullarga bo'linadi, zarrachalarining o'lchamlari 0,0625 dan kichik. mm diametrli va qo'pol kul, zarracha o'lchamlari 0,0625 gacha mm va 2 diametri mm. Tuf mos ravishda qoʻpol tüf (qoʻpol kul tüf) va mayda tüf (nozik kul tüf yoki chang tüf) ga boʻlinadi. Ko'pincha qo'pol zarralardan tashkil topgan konsolidatsiyalangan tefra lapilliston deb ataladi (zarralar 2). mm dan 64 gacha mm diametrli) yoki aglomerat yoki piroklastik breksiya (64 dan ortiq zarralar) mm diametrli) tufdan ko'ra.[3]

Vulkan kullari tarkibi jihatidan juda xilma-xil bo'lishi mumkin, shuning uchun tuflar ular hosil bo'lgan kul tarkibiga ko'ra yana tasniflanadi. Yuqori kremniyli vulkanizmdan kul, ayniqsa kul oqimlarida, asosan, vulqon shishasi bo'laklaridan iborat[8][9] va asosan shisha parchalaridan hosil bo'lgan tüf vitrik tüf deb ta'riflanadi.[10] Shisha parchalari odatda notekis shaklga ega yoki uchburchak shaklida bo'ladi. Ular magmada erigan gazlar tezda eritmadan chiqib ketishi natijasida hosil bo'lgan son-sanoqsiz mayda pufakchalarning parchalangan devorlari.[11]

Asosan alohida kristallardan tashkil topgan kuldan hosil boʻlgan tuflar kristall tuflar, asosan maydalangan togʻ jinslaridan tashkil topgan kuldan hosil boʻlgan tuflar esa litik tuflar deb taʼriflanadi.[10]

Vulkan kulining kimyoviy tarkibi yuqori kremniyli riolitik kuldan past kremniyli bazalt kulgacha bo'lgan vulqon jinslari kimyosining butun spektrini aks ettiradi va tüflar ham riolitik, andezit, bazalt va boshqalar sifatida tavsiflanadi.[8]

Transport va litifikatsiya tahrir

Vulkanik kulning shamollatgichdan uzoqlashishining eng to'g'ri yo'li, otilish ustunining bir qismi bo'lgan kul bulutlari kabidir. Ular er yuzasiga xos tarzda yaxshi saralangan va er bo'ylab bir xil qalinlikdagi adyolni hosil qilishga moyil bo'lgan yotqizilgan qatlamlar sifatida tushadi. Ustunning qulashi transportning yanada ajoyib va buzg'unchi shakliga olib keladi, u piroklastik oqimlar va to'lqinlar shaklini oladi, ular xarakterli ravishda yomon ajratiladi va past erlarda to'planadi. To'lqinli konlar ba'zan yuqori tezlikda oqimga xos bo'lgan cho'kindi tuzilmalarni ko'rsatadi, masalan, qumtepalar va antidunlar .[12] Er yuzasida allaqachon to'plangan vulqon kullari yomg'ir suvi bilan aralashganda yoki suv yoki muz tanasiga otilishi orqali loy oqimlari (laharlar) sifatida tashilishi mumkin.[13]

Etarlicha issiq bo'lgan vulqon kulining zarralari sirtga cho'kib ketgandan keyin bir-biriga payvandlanadi va payvandlangan tüf hosil qiladi. Payvandlash 600 °C (1,112 °F) dan ortiq haroratni talab qiladi . Agar toshda no'xat o'lchamdagi tarqoq bo'laklar yoki fiamma bo'lsa, u payvandlangan lapilli -tuf deb ataladi. Payvandlangan tüflar (va payvandlangan lapilli-tuflar) ignimbritlarda bo'lgani kabi, yiqilib tushishi yoki kul oqimidan to'planishi mumkin.[8] Payvandlash jarayonida shisha parchalari va pomza parchalari bir-biriga yopishadi (nuqta kontaktlarida bo'yinbog'), deformatsiyalanadi va siqiladi, natijada evtaksitik mato paydo bo'ladi.[13] Payvandlangan tüf odatda riolitik tarkibga ega, ammo barcha kompozitsiyalarning namunalari ma'lum.[8][11]

Kul oqimlari ketma-ketligi bir nechta sovutish birliklaridan iborat bo'lishi mumkin. Bularni payvandlash darajasi bilan farqlash mumkin. Sovutish moslamasining asosi odatda pastki sovuq yuzadan sovutish tufayli payvandlanmagan va oqimdagi suyuqliklarning payvandlash darajasi va ikkilamchi reaksiyalari oqim markaziga qarab yuqoriga ko'tariladi. Payvandlash sovutish moslamasining yuqori qismiga qarab kamayadi, bu erda qurilma tezroq soviydi. Payvandlash intensivligi, shuningdek, cho'kindi yupqaroq bo'lgan joylarga va manbadan masofaga qarab kamayishi mumkin.[14]

Sovuqroq piroklastik oqimlar payvandlanmagan va ular tomonidan yotqizilgan kul qatlamlari nisbatan mustahkamlanmagan.[13] Biroq, sovutilgan vulqon kuli tezda toshga aylanishi mumkin, chunki u odatda vulqon shishasining yuqori miqdoriga ega. Bu termodinamik jihatdan beqaror material bo'lib, er osti suvlari yoki dengiz suvlari bilan tez reaksiyaga kirishadi, shishadan gidroksidi metallar va kaltsiyni yuvadi. Seolitlar, gillar va kaltsitlar kabi yangi minerallar erigan moddalardan kristallanadi va tüfni sementlaydi.[13]

Tuflar, shuningdek, cho'kma muhiti bo'yicha, masalan, ko'l tüfi, suv osti tüfi yoki suv osti tüfi yoki kulni tashish mexanizmi bo'yicha, masalan, tushuvchi tüf yoki kul oqimi tüfi bo'yicha tasniflanadi. Eroziya va kul konlarining qayta joylashishi natijasida hosil bo'lgan qayta ishlangan tüflar, odatda, eol tüf yoki oqim tüf kabi transport agenti tomonidan tavsiflanadi.[8]

Hodisalar tahrir

Tuflar portlovchi vulkanizm sodir bo'lgan joyda to'planish potentsialiga ega va shuning uchun joylashuvi va yoshi bo'yicha keng tarqalgan.[15]

Yuqori kremniyli vulkanizm tahrir

Riyolit tüflarida pemzasimon, shishasimon bo'laklar va kvarts, ishqorli dala shpati, biotit va boshqalar bilan mayda skoriyalar mavjud. Islandiya,[16] Lipari,[17] Vengriya,[18] Amerikaning janubi-gʻarbiy qismidagi havza va tizma va Yangi Zelandiya[15] bunday tüflar koʻzga koʻringan hududlar qatoriga kiradi. Uelsning qadimgi jinslarida,[19] Charnvud[20] va boshqalarda shunga o'xshash tüflar ma'lum, ammo barcha holatlarda ular silislanish (ularni opal, kalsedon va kvarts bilan to'ldirgan) va devitrifikatsiya orqali sezilarli darajada o'zgaradi. .[21] Dumaloq korroziyalangan kvarts kristallarining tez-tez bo'lishi, masalan, riolitik lavalarda uchraydi, ularning haqiqiy tabiatini ko'rsatishga yordam beradi.

Payvandlangan ignimbritlar juda katta hajmga ega bo'lishi mumkin, masalan, 631 000 yil oldin Vayomingdagi Yellowstone Kalderadan otilib chiqqan Lava Creek Tuff . Bu tufning asl hajmi kamida 1,000 cubic kilometre (240 cu mi) .[22] Ma'lumki, Lava Creek tüfi 1980-yildagi Sent-Yelens tog'ining otilishi cho'kindilaridan kamida 1000 baravar kattaroqdir va u vulqon portlash indeksi (VEI) 8 ni tashkil etgan, bu oxirgi 10 000 yil ichida ma'lum bo'lgan har qanday otilishdan kattaroqdir.[23] Kul oqimi tüflari 7,000 square kilometre (2,700 mi²) Yangi Zelandiyaning Shimoliy oroli va taxminan 100,000 square kilometre (39,000 mi²) Nevada . Kul oqimi tüflari toshqin bazaltlari hajmiga teng keladigan yagona vulqon mahsulotidir.[15]

Amerika Qo'shma Shtatlarining shimoli-sharqidagi Tioga Bentonitning tarkibi kristalli tüfdan tüf slanetsgacha o'zgaradi. U shamol tomonidan ko'tarilgan kul sifatida dengizga tushib, tubiga cho'kdi. Yoshi devon davri boʻlib, Virjiniyaning markaziy qismidagi ventilyatsiyadan chiqqan boʻlib, u yerda tüf maksimal qalinligi taxminan 40 meter (130 ft) . .[24]

Traxit tüflarida kvarts kam yoki umuman yoʻq, lekin koʻp sanidin yoki anortoklaza, baʼzan esa oligoklaza dala shpati boʻlib, vaqti-vaqti bilan biotit, ogit va shoxli boʻladi. Ob-havo sharoitida ular ko'pincha ikkilamchi kvarts bilan kaolinga boy yumshoq qizil yoki sariq gil toshlarga aylanadi. So'nggi traxit tüflari Reyn (Siebengebirgeda),[25] Ischia[26] va Neapol yaqinida joylashgan.[27] Sharqiy Afrika Riftida traxit-karbonatit tüflari aniqlangan.[28] Rio-de-Janeyrodan gidroksidi kristalli tüflar haqida xabar berilgan.[29]

Andezit tuflari juda keng tarqalgan. Ular Kordilyera[30][31] va And togʻlari[32] togʻlari boʻylab, Gʻarbiy Hindiston, Yangi Zelandiya,[33] Yaponiya[34] va boshqalarda uchraydi. Leyk okrugida,[35] Shimoliy Uels, Lorn, Pentlend Hills, Cheviots va Buyuk Britaniyaning boshqa koʻplab tumanlarida aynan oʻxshash tabiatdagi qadimiy qoyalar koʻp. Rangda ular qizil yoki jigarrang; ularning skoriya parchalari katta bloklardan tortib, mayda donador changgacha bo'lgan barcha o'lchamlarga ega. Bo'shliqlar ko'plab ikkilamchi minerallar bilan to'ldirilgan, masalan, kaltsit, xlorit, kvarts, epidot yoki kalsedon; mikroskopik bo'limlarda esa, asl lavaning tabiatini deyarli har doim parchalangan shishasimon asosda paydo bo'ladigan kichik kristallarning shakli va xususiyatlaridan aniqlash mumkin. Hatto eng kichik tafsilotlarda ham, bu qadimiy tüflar Kotopaxi, Krakatoa va Mont Pelening zamonaviy kul yotoqlariga to'liq o'xshaydi.

Mafik vulkanizmi tahrir

 
Olmos boshi, tuf konus
 
Pasxa orolidagi moalarning aksariyati toleyit bazalt tüfidan o'yilgan.

Mafik vulqonizm odatda portlovchi bo'lmagan va ozgina kul hosil qiladigan Gavayi otilishi shaklida bo'ladi.[36] Biroq, bazaltik magma va er osti suvlari yoki dengiz suvlari o'rtasidagi o'zaro ta'sir ko'p miqdorda kul hosil qiluvchi gidromagmatik portlashlarga olib keladi. Bu kul konuslarini cho'kadi, keyinchalik ular tüf konuslariga aylanishi mumkin. Olmos boshi, Gavayi, Ka'ula oroli kabi tüf konusining namunasidir. Bunday otilishlarda hosil bo'lgan shishasimon bazalt kuli litifikatsiya jarayonining bir qismi sifatida tezda palagonitga aylanadi.[37]

An'anaviy mafik vulkanizm kam kul hosil qilsa-da, hosil bo'lgan kul mahalliy darajada muhim konlar sifatida to'planishi mumkin. Bunga Gavayi orolidagi Pahala kulini misol qilib keltirish mumkin, uning qalinligi 15 meter (49 ft) . . Bu konlar ham tezda palagonitga, oxir oqibatda esa lateritga aylanadi.[37]

Bazaltik tüflar Skye, Mull, Antrim va boshqa joylarda ham topilgan, bu erda paleogen vulqon jinslari topilgan; Shotlandiya, Derbyshire va Irlandiyada karbon qatlamlari orasida va Leyk okrugining hali ham eski jinslari orasida, Shotlandiyaning janubiy tepaliklari va Uels. Ular qora, to'q yashil yoki qizil rangga ega; dag'alligi jihatidan juda farq qiladi, ba'zilari diametri bir fut yoki undan ko'p bo'lgan yumaloq shimgichli bombalar bilan to'la; va ko'pincha suv osti bo'lib, slanets, qumtosh, qum va boshqa cho'kindi moddalarni o'z ichiga olishi mumkin va ba'zan toshga aylangan. Oxirgi bazalt tüflari Islandiya, Farer orollari, Yan Mayen, Sitsiliya, Gavayi orollari, Samoa va boshqalarda topilgan. Buzilganida, ular kaltsit, xlorit, serpantin bilan to'ldiriladi va ayniqsa, lavalar tarkibida nefelin yoki leysit bo'lsa, ko'pincha analsit, prehnit, natrolit, skoletsit, şabazit, heulandit va boshqalar kabi zeolitlarga boy bo'ladi.

Ultramafik vulkanizm tahrir

Kimberlitlar tahrir

Ultramafik tüflarning paydo bo'lishiga Afrika janubidagi va boshqa mintaqalardagi olmos konlaridagi maarlarda kimberlitning sirt konlari kiradi. Kimberlitning asosiy navi quyuq zangori-yashil, serpantinga boy brekchi (ko'k-tuproq) bo'lib, u yaxshilab oksidlanganda va ob-havodan o'tib, mo'rt jigarrang yoki sariq massaga aylanadi ("sariq-tuproq"). Ushbu brechkalar gaz-qattiq aralashmalar sifatida joylashtirilgan va odatda intruziv quvurlarga o'xshash tuzilmalarni hosil qiluvchi diatremalarda saqlanadi va qazib olinadi. Chuqurlikda ba'zi kimberlit brekchilari parchalanmagan tog 'jinslaridan yasalgan diklarning ildiz zonalariga kiradi. Er yuzasida maar konlarida ultramafik tüflar paydo bo'lishi mumkin. Kimberlitlar olmosning eng keng tarqalgan magmatik manbai bo'lganligi sababli, maardan diatremaga ildiz zonasi dikkalariga o'tishlari batafsil o'rganilgan. Diatremefacies kimberlite tuf emas, balki ultramafik brekchi deb ataladi.

Komatiliklar tahrir

Komatiit tuflari, masalan, Kanada va Janubiy Afrikaning yashil tosh zonalarida joylashgan.[38][39]

Buklanish va metamorfizm tahrir

 
Rimdagi tüf bloklaridan yasalgan qadimgi Serv devorlarining qoldiqlari
 
19-asrda Brisben tüfidan qurilgan qirg'oq devori, Brisben shahri

Vaqt o'tishi bilan, ob-havodan boshqa o'zgarishlar tuf konlarini bosib ketishi mumkin. Ba'zan ular katlamada ishtirok etadilar va qirqiladi va yorilib ketadi. Ingliz ko'li okrugidagi yashil shiferlarning ko'pchiligi nozik parchalangan kuldir. Charnvud o'rmonida ham tuflar shilimshiq va yorilib ketgan. Yashil rang xloritning katta rivojlanishi bilan bog'liq. Ko'pgina mintaqalarning kristalli shistlari orasida kvarts, shoxli, xlorit yoki biotit, temir oksidi, dala shpati va boshqalardan iborat yashil to'shak yoki yashil shistlar paydo bo'ladi va ular, ehtimol, qayta kristallangan yoki metamorflangan tüflardir. Ular ko'pincha epidiorit va shoxli qatlamlar - mos keladigan lavalar va sillalar bo'lgan shistlar bilan birga keladi. Ba'zi xlorit-shistlar, ehtimol, vulqon tüflarining o'zgargan qatlamlaridir. Devon va Germaniyaning "Shalshteynlari" ko'plab parchalangan va qisman qayta kristallangan kul qatlamlarini o'z ichiga oladi, ularning ba'zilari hali ham o'zlarining parcha-parcha tuzilishini saqlab qolishadi, ammo ularning lapillilari tekislangan va chizilgan. Ularning bug 'bo'shliqlari odatda kaltsit bilan, lekin ba'zan kvarts bilan to'ldiriladi. Bu jinslarning toʻliq oʻzgargan shakllari platy, yashil xloritli shistlar; bularda esa ularning asl vulqon tabiatini ko'rsatuvchi tuzilmalar juda kam uchraydi. Bu yorilgan tuflar va kristalli shistlar orasidagi oraliq bosqichlardir.

Muhimligi tahrir

Tufning asosiy iqtisodiy qiymati qurilish materialidir. Qadimgi dunyoda tüfning nisbiy yumshoqligi, u odatda mavjud bo'lgan joylarda qurilish uchun ishlatilganligini anglatadi.[5] Tuf Italiyada keng tarqalgan bo'lib, rimliklar uni ko'plab binolar va ko'priklar uchun ishlatishgan.[6] Masalan, Ventoten orolining butun porti (hali ham foydalanilmoqda) tüfdan o'yilgan. Miloddan avvalgi IV asrda Rim shahrini himoya qilish uchun qurilgan Serviya devori ham deyarli butunlay tufdan qurilgan.[40] Rimliklar, shuningdek, tüfni kichik, to'rtburchaklar toshlarga kesib tashladilar, ular opus reticulatum deb nomlanuvchi naqshda devorlarni yaratish uchun foydalandilar.[41]

Rim va Neapolda qurilish toshi sifatida ko'p ishlatiladigan peperino traxit tüfidir . Pozzolana shuningdek, parchalangan tüf, lekin asosiy xarakterga ega, dastlab Neapol yaqinida olingan va tsement sifatida ishlatilgan, ammo bu nom har doim ham bir xil xususiyatga ega bo'lmagan bir qator moddalarga nisbatan qo'llaniladi. Germaniyaning Eyfel mintaqasida traxit, pomzasimon tüf gidravlik ohak sifatida keng ishlangan.

Germaniyaning Eyfel mintaqasidagi tuf Frankfurt, Gamburg va boshqa yirik shaharlarda temir yo'l stantsiyalari va boshqa binolarni qurishda keng qo'llanilgan.[13] Rochlitz Porfirdan foydalangan holda qurilishni Colditz qal'asidagi ibodatxona kirishining tashqarisidagi mannerist uslubidagi haykaltarosh portalida ko'rish mumkin.[42] Rochlitz Porphyr savdo nomi Germaniyada 1000-yildan ortiq arxitektura tarixiga ega bo'lgan Saksoniyaning o'lchovli toshining an'anaviy belgisidir. Karyerlar Rochlitz yaqinida joylashgan.[43]

Nevada shtatidagi Basin va Range provinsiyasida tüf va ignimbritda joylashgan, AQSh Energetika Departamentining ishlatilgan yadro reaktori va boshqa radioaktiv chiqindilar uchun terminal ombori bo'lgan Yucca tog'i yadro chiqindilari ombori .[44] Kaliforniyaning Napa vodiysi va Sonoma vodiysida vino bochkalarini saqlash uchun tüfdan yasalgan maydonlar muntazam ravishda qazib olinadi.[45]

Rano Rarakudan kelgan tufdan Pasxa orolidagi Rapa Nui xalqi mashhur moai haykallarining aksariyatini yasashda foydalangan.[7]

Tuf Armaniston va Arman me'morchiligida keng qo'llaniladi.[46] Bu Armaniston poytaxti Yerevan,[47][48] Gyumri, Armanistonning ikkinchi yirik shahri va mamlakatning o'rta asrlar poytaxti Ani, hozir Turkiyada qurilishda ishlatiladigan toshning asosiy turi.[49] Armanistondagi kichik bir qishloq 1946-yilda Tufashen (so'zma-so'z "tufdan qurilgan") deb o'zgartirildi[50]

Tefroxronologiya tahrir

 
Radiometrik tanishish uchun ishlatiladigan metatuff yotoqlarini ko'rsatadigan Pilar shakllanishi

Tuflar geologik jihatdan bir zumda va ko'pincha katta hududda to'planadi. Bu ularni vaqt-stratigrafik belgilar sifatida juda foydali qiladi. Tuflar va boshqa tefra konlarini shu tarzda ishlatish tefroxronologiya deb nomlanadi va ayniqsa to'rtlamchi davr xronostratigrafiyasi uchun foydalidir. Alohida tuf to'shaklari kimyoviy tarkibi va fenokristal birikmalariga ko'ra "barmoq izlari" bo'lishi mumkin.[51] Tuf to'shaklari uchun mutlaq yoshni K-Ar, Ar-Ar yoki uglerod-14 bilan aniqlash mumkin.[8] Koʻpgina tüflarda topilgan tsirkon donalari juda chidamli boʻlib, hatto mezbon tüfning shistgacha boʻlgan metamorfizmiga ham bardosh bera oladi, bu esa qadimgi metamorfik jinslarga mutlaq yoshni belgilash imkonini beradi. Misol uchun, Pilar formatsiyasidagi metamorflangan tüf to'shagidagi tsirkonlarning tanishuvi Pikuris orogeniyasining dastlabki dalillarini keltirdi.[52]

Etimologiya tahrir

Tuf so'zi italyancha tufo so'zidan olingan.[53]

Manba tahrir

  1. Fisher, Richard V.. Pyroclastic rocks. Berlin: Springer-Verlag, 1984 — 89–90 bet. ISBN 3540127569. 
  2. Schmincke, Hans-Ulrich. Volcanism. Berlin: Springer, 2003 — 138 bet. ISBN 9783540436508. 
  3. 3,0 3,1 3,2 Schmidt, R. (1981). „Descriptive nomenclature and classification of pyroclastic deposits and fragments: recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks“. Geology. 9-jild. 41–43-bet. doi:10.1007/BF01822152. Qaraldi: 27 September 2020.
  4. „Arenig volcanic and sedimentary strata, central New Brunswick and eastern Maine“. Qaraldi: 2022-yil 24-sentyabr.
  5. 5,0 5,1 Dolan, S.G.; Cates, K.M.; Conrad, C.N.; Copeland, S.R. (14 March 2019). „Home Away from Home: Ancestral Pueblo Fieldhouses in the Northern Rio Grande“. Lanl-Ur. 19–21132-jild. 96-bet. Qaraldi: 29 September 2020.
  6. 6,0 6,1 Jackson, M. D.; Marra, F.; Hay, R. L.; et al. (2005). „The Judicious Selection and Preservation of Tuff and Travertine Building Stone in Ancient Rome*“. Archaeometry. 47-jild, № 3. 485–510-bet. doi:10.1111/j.1475-4754.2005.00215.x.
  7. 7,0 7,1 Richards, Colin „Making Moai: Reconsidering concepts of riskin the construction of megalithic architecture in Rapa Nui (Easter Island)“,. Rapa Nui : Easter Island Cultural and Historical Perspectives, Berlin [Germany], 2016 — 160–161 bet. ISBN 9783732902651. 
  8. 8,0 8,1 8,2 8,3 8,4 8,5 Fisher & Schmincke 1984.
  9. Blatt, Harvey. Petrology : igneous, sedimentary, and metamorphic., 2nd, New York: W. H. Freeman, 1996 — 27–29 bet. ISBN 0716724383. 
  10. 10,0 10,1 O'Brien, R. T. (1 March 1963). „Classification of tuffs“. Journal of Sedimentary Research. 33-jild, № 1. 234–235-bet. Bibcode:1963JSedR..33..234O. doi:10.1306/74D70E20-2B21-11D7-8648000102C1865D.
  11. 11,0 11,1 Blatt & Tracy 1996.
  12. Philpotts, Anthony R.. Principles of igneous and metamorphic petrology, 2nd, Cambridge, UK: Cambridge University Press, 2009 — 73 bet. ISBN 9780521880060. 
  13. 13,0 13,1 13,2 13,3 13,4 Schmincke 2003.
  14. Ross, Clarence S.; Smith, Robert L. (1961). „Ash-flow tuffs: Their origin, geologic relations, and identification“. USGS Profession Paper Series. Professional Paper. № 366. 19-bet. doi:10.3133/pp366.
  15. 15,0 15,1 15,2 Philpotts & Ague 2009.
  16. Jónasson, K. (December 1994). „Rhyolite volcanism in the Krafla central volcano, north-east Iceland“. Bulletin of Volcanology. 56-jild, № 6–7. 516–528-bet. Bibcode:1994BVol...56..516J. doi:10.1007/BF00302832.
  17. Crisci, G. M.; Rosa, R.; Lanzafame, G.; et al. (September 1981). „Monte guardia sequence: a late-pleistocene eruptive cycle on Lipari (Italy)“. Bulletin Volcanologique. 44-jild, № 3. 241–255-bet. Bibcode:1981BVol...44..241C. doi:10.1007/BF02600562.
  18. Zelenka, Tibor; Balázs, Endre; Balogh, Kadosa; Kiss, János (December 2004). „Buried Neogene volcanic structures in Hungary“ (PDF). Acta Geologica Hungarica. 47-jild, № 2–3. 177–219-bet. doi:10.1556/ageol.47.2004.2-3.6.
  19. Howells, M. F.; Reedman, A. J.; Campbell, S. D. G. (May 1986). „The submarine eruption and emplacement of the Lower Rhyolitic Tuff Formation (Ordovician), N Wales“. Journal of the Geological Society. 143-jild, № 3. 411–423-bet. Bibcode:1986JGSoc.143..411H. doi:10.1144/gsjgs.143.3.0411.
  20. Carney, John (2000). „Igneous processes within late Precambrian volcanic centres near Whitwick, northwestern Charnwood Forest“ (PDF). Mercian Geologist. 15-jild, № 1. 7–28-bet. 2022-09-28da asl nusxadan (PDF) arxivlandi. Qaraldi: 1 October 2020.
  21. McArthur, A. N.; Cas, R. A. F.; Orton, G. J. (30 November 1998). „Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales)“. Bulletin of Volcanology. 60-jild, № 4. 260–285-bet. Bibcode:1998BVol...60..260M. doi:10.1007/s004450050232.
  22. Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T. (August 2015). „Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40 Ar/ 39 Ar and U-Pb dating of sanidine and zircon crystals: AGE OF THE LAVA CREEK SUPERERUPTION“. Geochemistry, Geophysics, Geosystems. 16-jild, № 8. 2508–2528-bet. doi:10.1002/2015GC005881.
  23. „What is a supervolcano? What is a supereruption?“. Natural Hazards. United States Geological Survey. Qaraldi: 2020-yil 30-sentyabr.
  24. Dennison, J. M.; Textoris, D. A. (March 1970). „Devonian tioga tuff in Northeastern United States“. Bulletin Volcanologique. 34-jild, № 1. 289–294-bet. Bibcode:1970BVol...34..289D. doi:10.1007/BF02597791.
  25. Lippolt, H. J. (1983). „Distribution of Volcanic Activity in Space and Time“. Plateau Uplift. 112–120-bet. doi:10.1007/978-3-642-69219-2_15. ISBN 978-3-642-69221-5.
  26. Gillot, P-Y.; Chiesa, S.; Pasquaré, G.; Vezzoli, L. (September 1982). „<33,000-yr K–Ar dating of the volcano–tectonic horst of the Isle of Ischia, Gulf of Naples“. Nature. 299-jild, № 5880. 242–245-bet. Bibcode:1982Natur.299..242G. doi:10.1038/299242a0.
  27. Giannetti, Bernardino; De Casa, Giancarlo (March 2000). „Stratigraphy, chronology, and sedimentology of ignimbrites from the white trachytic tuff, Roccamonfina Volcano, Italy“. Journal of Volcanology and Geothermal Research. 96-jild, № 3–4. 243–295-bet. Bibcode:2000JVGR...96..243G. doi:10.1016/S0377-0273(99)00144-4.
  28. Macdonald, R.; Kjarsgaard, B. A.; Skilling, I. P.; Davies, G. R.; Hamilton, D. L.; Black, S. (June 1993). „Liquid immiscibility between trachyte and carbonate in ash flow tuffs from Kenya“. Contributions to Mineralogy and Petrology. 114-jild, № 2. 276–287-bet. Bibcode:1993CoMP..114..276M. doi:10.1007/BF00307762.
  29. Motoki, Akihisa; Geraldes, Mauro Cesar; Iwanuch, Woldemar; Vargas, Thais; Motoki, Kenji Freire; Balmant, Alex; Ramos, Marina Nascimento (March 2012). „The pyroclastic dyke and welded crystal tuff of the Morro dos Gatos alkaline intrusive complex, State of Rio de Janeiro, Brazil“. Rem: Revista Escola de Minas. 65-jild, № 1. 35–45-bet. doi:10.1590/S0370-44672012000100006.
  30. Donnelly-Nolan, Julie M.; Nolan, K. Michael (1 October 1986). „Catastrophic flooding and eruption of ash-flow tuff at Medicine Lake volcano, California“. Geology. 14-jild, № 10. 875–878-bet. Bibcode:1986Geo....14..875D. doi:10.1130/0091-7613(1986)14<875:CFAEOA>2.0.CO;2.
  31. Nokleberg, Warren J.; Jones, David L.; Silberling, Norman J. (1 October 1985). „Origin and tectonic evolution of the Maclaren and Wrangellia terranes, eastern Alaska Range, Alaska“. GSA Bulletin. 96-jild, № 10. 1251–1270-bet. Bibcode:1985GSAB...96.1251N. doi:10.1130/0016-7606(1985)96<1251:OATEOT>2.0.CO;2.
  32. Grunder, Anita L. (1987). „Low ?18O silicic volcanic rocks at the Calabozos caldera complex, southern Andes: Evidence for upper-crustal contamination“. Contributions to Mineralogy and Petrology. 95-jild, № 1. 71–81-bet. doi:10.1007/BF00518031.
  33. Cronin, Shane J.; Neall, Vincent E.; Palmer, Alan S. (January 1996). „Geological history of the north-eastern ring plain of Ruapehu volcano, New Zealand“. Quaternary International. 34–36-jild. 21–28-bet. Bibcode:1996QuInt..34...21C. doi:10.1016/1040-6182(95)00066-6.
  34. Tatsumi, Yoshiyuki; Ishizaka, Kyoichi (April 1982). „Magnesian andesite and basalt from Shodo-Shima Island, southwest Japan, and their bearing on the genesis of calc-alkaline andesites“. Lithos. 15-jild, № 2. 161–172-bet. Bibcode:1982Litho..15..161T. doi:10.1016/0024-4937(82)90007-X.
  35. Oertel, G. (1970). „Deformation of a Slaty, Lapillar Tuff in the Lake District, England“. Geological Society of America Bulletin. 81-jild, № 4. 1173-bet. Bibcode:1970GSAB...81.1173O. doi:10.1130/0016-7606(1970)81[1173:DOASLT]2.0.CO;2.
  36. Macdonald, Gordon A.. Volcanoes in the sea : the geology of Hawaii, 2nd, Honolulu: University of Hawaii Press, 1983 — 9 bet. ISBN 0824808320. 
  37. 37,0 37,1 Macdonald 1983.
  38. Richan, Lindsay; Gibson, Harold L.; Houlé, Michel G.; Lesher, C. Michael (2015). „Mode of emplacement of Archean komatiitic tuffs and flows in the Selkirk Bay area, Melville Peninsula, Nunavut, Canada“. Precambrian Research. 263-jild. 174–196-bet. Bibcode:2015PreR..263..174R. doi:10.1016/j.precamres.2015.03.004.
  39. Huber, M.S.; Byerly, G.R. (2018). „Volcanological and petrogenetic characteristics of komatiites of the 3.3 Ga Saw Mill Complex, Weltevreden Formation, Barberton Greenstone Belt, South Africa“. South African Journal of Geology. 121-jild, № 4. 463–486-bet. doi:10.25131/sajg.121.0031.
  40. Panei, Liliana (10 April 2010). „The tuffs of the "Servian Wall" in Rome: Materials from the local quarries and from the conquered territories“. ArchéoSciences. № 34. 39–43-bet. doi:10.4000/archeosciences.2599.
  41. Giavarini, Carlo, A. Samueli Ferretti, and Maria Laura Santarelli. 2006. "Mechanical characteristics of Roman ʻopus caementicium’". Fracture and Failure of Natural Building Stones. Applications in the Restoration of Ancient Monuments. pp. 108, 110
  42. Georg Dehio: Handbuch der deutschen Kunstdenkmäler, Sachsen II. Deutscher Kunstverlag, München, Berlin 1998, p. 160
  43. Heiner Siedel: Sächsische „Porphyrtuffe“ aus dem Rotliegend als Baugesteine: Vorkommen und Abbau, Anwendung, Eigenschaften und Verwitterung. In: Institut für Steinkonservierung e. V. Bericht Nr. 22, 2006, p. 47-58. „Archived copy“. 2011-yil 11-iyunda asl nusxadan arxivlangan. Qaraldi: 2010-yil 9-may.
  44. Long, Jane C .S.; Ewing, Rodney C. (19 May 2004). „YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste“. Annual Review of Earth and Planetary Sciences. 32-jild, № 1. 363–401-bet. Bibcode:2004AREPS..32..363L. doi:10.1146/annurev.earth.32.092203.122444.
  45. Kositsky, Andrew; Lewis, Scott (2016). „Seismic Performance of Wine Caves“ (PDF). The World Tunnel Conference. Qaraldi: 1 October 2020.
  46. Holding, N.. Armenia: with Nagorno Karabagh. Bradt Travel Guides, 2006 — 32 bet. ISBN 978-1-84162-163-0. 2010-yil 26-mayda qaraldi. 
  47. Billock, Jennifer. „How Ancient Volcanoes Created Armenia's Pink City“. Smithsonian (2016-yil 28-dekabr). 2020-yil 9-iyunda asl nusxadan arxivlangan. „...pink tuff is rare outside of the region and Yerevan is the only major city built out of this stone.“.
  48. Lottman, Herbert R.. „Despite Ages of Captivity, The Armenians Persevere“. The New York Times. „The city, whose population is now upwards of 800,000, has been rebuilt in the rosy volcanic stone called tufa...“.
  49. Haviland, William A. The Essence of Anthropology, 4th, Cengage Learning, 2015 — 137 bet. „...walls of monumental buildings at Ani (including the fortifications) were built of smoothly dressed blocks of tuff stone...“ 
  50. Hakobian, T. Kh. „Տուֆաշեն [Tufashen]“,. Հայաստանի և հարակից շրջանների տեղանունների բառարան [Dictionary of Toponyms of Armenia and Surrounding Regions] Volume V (hy). Yerevan University Press, 2001 — 147 bet. 
  51. Philpotts and Ague 2009, p. 74
  52. Daniel, Christopher G.; Pfeifer, Lily S.; Jones, James V, III; McFarlane, Christopher M. (2013). „Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic (ca. 1490–1450 Ma) deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny“. GSA Bulletin. 125-jild, № 9–10. 1423–1441-bet. Bibcode:2013GSAB..125.1423D. doi:10.1130/B30804.1. Qaraldi: 17 April 2020.
  53. „Definition of 'tuff'“. Collins English Dictionary. HarperCollins. Qaraldi: 2020-yil 30-sentyabr.