Efer so'zini 1848-yilda nemis kimyogari Leopold Gmelin [3] , nemis Essigäther qisqarishi sifatida "sirka efirini " ishlab chiqqan.
Eferlarning nomlari spirt va asosiy kislotadan olingan bo'lib, ikkinchisi organik yoki noorganik bo'lishi mumkin. Eng oddiy karboksilik kislotalardan olingan efirlar odatda an'anaviy," arzimas nomlar " bo'yicha nomlanadi. Masalan format, atsetat, propionat va butirat, IUPAC nomenklaturasi metanoat, etanoat, propanoat va butanoatdan farqli o'laroq. Boshqa tomondan, murakkabroq karboksilik kislotalardan olingan esterlar, aksincha , kislota nomidan keyin qo'shilgan IUPAC nomidan foydalangan holda ko'proq nomlanadi. Masalan, heksil kaprilat nomi bilan ham tanilgan efer oktanoat formulasi quyidagicha CH3 (CH2 )6 CO2 (CH2 )5 CH3 .
Organik eferlarning kimyoviy formulasi odatda RCO2 R’ shaklni oladi, bu yerda R va R' mos ravishda karbosilik kislota va spirtning uglevodorod qismlari. Masalan, butanol va sirka kislotasidan (sistematik ravishda etanoik kislota) olingan butil asetat (tizimli butil etanoat) CH3 CO2 C4 H9 . Muqobil taqdimotlarda keng tarqalgani CH3 COOC4 H9 .
Siklik efirlar organik yoki noorganik kislotadan olinganligidan qat'i nazar, laktonlar deb ataladi. Organik laktonga misollardan biri γ -valerolaktondir .
Organik efirlarning kam uchraydigan sinfi ortoesterlardir, quyidagicha RC(OR′)3 formulaga ega. Trietilortoformat (HC(OC2 H5 )3 ) nomi boʻyicha (lekin sintezi emas) ortoform kislota (HC(OH)3 ) va etanol .
Eferlarni noorganik kislotalardan ham olish mumkin.
Fosfor kislotasi fosfat efirlarini hosil qiladi, masalan, trifenilfosfat
sulfat kislota sulfat efirlarini hosil qiladi, masalan, dimetilsulfat
nitrat kislota nitrat efirlarini hosil qiladi, masalan, metil nitrat
borik kislotasi boratlar hosil qiladi, masalan, trimetilborat
karbonat kislota karbonat efirlarini hosil qiladi, masalan, etilen karbonat Tautomerlar sifatida mavjud bo'lgan noorganik kislota turli xil efirlarni hosil qiladi.
Noorganik kislotalar barqaror bo'lmagan yoki qiyin efirlarni hosil qiladi.
Asosan yuzlab ma'lum bo'lgan barcha metall va metalloid alkoksidlarni , gipotetik kislotalarning efirlari deb tasniflash mumkin.
Tuzilishi va bog'lanishi Tahrirlash
Eferlar karbonil markazini o'z ichiga oladi, bu 120° C–C–O va O–C–O burchaklarini hosil qiladi. Amidlardan farqli o'laroq, efirlar strukturaviy moslashuvchan funktsional guruhlardir, chunki C–O–C aloqalari atrofida aylanishi past to'siqga ega. Ularning moslashuvchanligi va past polaritesi ularning jismoniy xususiyatlarida namoyon bo'ladi. Ular mos keladigan amidlarga qaraganda kamroq qattiq (pastki erish nuqtasi) va ko'proq uchuvchan (pastki qaynash nuqtasi) bo'lishga moyil[4] . Efirlardagi alfa-vodorodlarning pK a 25 ga teng[5] .
Ko'pgina efirlar konformatsion izomeriya uchun potentsialga ega, ammo ular giperkontugatsiya va dipolni minimallashtirish effektlari kombinatsiyasi tufayli s -trans (yoki E) muqobilidan ko'ra s -cis (yoki Z) konformatsiyasini qabul qilishga moyildirlar. Z konformatsiyasini afzal ko'rishga, agar mavjud bo'lsa, o'rinbosar va erituvchining tabiati ta'sir qiladi[6] [7] . Kichik halqali laktonlar s -trans siklik tuzilishi tufayli konformatsiyalanadi.
Fizik xususiyatlari va xarakteristikasi Tahrirlash
Eferlar qutbli , ammo spirtlarga qaraganda kamroq qutblidir. Ular vodorod bog'lanishlarida vodorod bog'lari ni qabul qiluvchi sifatida ishtirok etadilar, lekin spirtlardan farqli o'laroq, vodorod bog'lari donorlari sifatida harakat qila olmaydilar. Vodorod bog'lanishida ishtirok etish qobiliyati suvda bir oz eruvchanlikni beradi. Vodorod bog'larini berish qobiliyati yo'qligi sababli, efirlar o'z-o'zidan birlashmaydi. Shunday qilib, eferlarga o'xshash molekulyar og'irlikdagi karbosilik kislotalarga qaraganda ancha uchuvchan[4] .
Xarakterlash va tahlil qilish Tahrirlash
Eferlar odatda gaz xromatografiyasi yordamida ularning uchuvchanligidan foydalangan holda aniqlanadi. Eferlar uchun IQ spektrlari 1730–1750 sm−1 oralig'ida kuchli o'tkir chiziqqa va v C=O ga tayinlangan. Bu cho'qqi karbonilga biriktirilgan funksional guruhlarga qarab o'zgaradi. Misol uchun, benzol halqasi yoki karbonil bilan konjugatsiyadagi qo'sh bog'lanish to'lqin sonini taxminan 30 sm−1 ga tushiradi.
Ilovalar va hodisalari Tahrirlash
Eferifikatsiya kimyoviy reaksiyaning umumiy nomi bo'lib, unda ikkita reaktiv (odatda spirt va kislota) reaksiya mahsuloti sifatida efir hosil qiladi. Eferlar organik kimyo va biologik materiallarda keng tarqalgan bo'lib, ko'pincha yoqimli xarakterli meva hidiga ega. Bu ularning xushbo'y hid va lazzat sanoatida keng qo'llanilishiga olib keladi. Efer aloqalari ko'plab polimerlarda ham mavjud.
Karbosilik kislotalarning spirtlar bilan eferlanishi Tahrirlash
Klassik sintez Fisher eferifikatsiyasi bo'lib, u karbosiklik kislotani alkogol bilan suvsizlantiruvchi vosita ishtirokida davolashni o'z ichiga oladi.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo><msup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></msup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mrow class="MJX-TeXAtom-REL"><mover><mrow class="MJX-TeXAtom-OP MJX-fixedlimits"><mrow class="MJX-TeXAtom-ORD"><mpadded depth="0" height="0"><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></mrow></mpadded></mrow></mrow><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="false" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></mrow></mrow></mstyle></mrow></mover></mrow><msubsup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mn></mrow></msubsup><msup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo></msup><mo>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
</mtext></mrow></mstyle></mrow><annotation encoding="application/x-tex"> </annotation></semantics></math>
RCO
2
H
+
R
′
OH
↽
−
−
⇀
RCO
2
R
′
+
H
2
O
{\displaystyle {\ce {RCO2H + R'OH <=> RCO2R' + H2O}}}
Bunday reaksiyalar uchun muvozanat konstantasi, masalan, etil asetat uchun taxminan 5 ga teng[11] . Katalizator bo'lmaganda reaksiya sekin boradi. Sulfat kislota bu reaksiyaning tipik katalizatoridir. Polimer sulfonik kislotalar kabi ko'plab boshqa kislotalar ham qo'llaniladi. Eferifikatsiyaning qaytarilishi yuqori bo'lganligi sababli, eferning rentabelligini Le Chatelier prinsipi yordamida yaxshilash mumkin.
Spirtli ichimliklarni ko'p miqdorda ishlatish (ya'ni, erituvchi sifatida).
Suvsizlantiruvchi vositadan foydalanish. Sulfat kislota nafaqat reaksiyani katalizlaydi, balki suvni (reaksiya mahsuloti) sekvestr qiladi. Molekulyar elaklar kabi boshqa quritish vositalari ham samarali.
Dean-Stark apparati bilan birgalikda toluol bilan kam qaynaydigan azeotroplar sifatida distillash kabi jismoniy vositalar bilan suvni olib tashlash.Spirtli ichimliklar va karbosiklik kislotalar aralashmalarining suvsizlanishiga olib keladigan reaktivlar sifatida ma'lum. Steglich eferifikatsiyasi , bu yumshoq sharoitda eferlarni hosil qilish usulidir. Bu usul peptid sintezida mashhur bo'lib, substratlar yuqori issiqlik kabi og'ir sharoitlarga ega. DCC (disikloheksilkarbodiimid ) karbosiklik kislotani keyingi reaksiyaga faollashtirish uchun ishlatiladi. 4-Dimetilaminopiridin (DMAP) asil-transfer katalizatori sifatida ishlatiladi.
Spirtli ichimliklar va karbosiklik kislotalar aralashmalarini suvsizlantirishning yana bir usuli Mitsunobu reaksiyasi .
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo></msup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mo stretchy="false">
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mo stretchy="false">
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo></msup><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mo stretchy="false">
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><mo>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mo><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
</mn></mrow></msubsup></mrow></mstyle></mrow></semantics></math>
RCO
2
H
+
R
′
OH
+
P
(
C
6
H
5
)
3
+
R
2
N
2
⟶
RCO
2
R
′
+
OP
(
C
6
H
5
)
3
+
R
2
N
2
H
2
{\displaystyle {\ce {RCO2H + R'OH + P(C6H5)3 + R2N2 -> RCO2R' + OP(C6H5)3 + R2N2H2}}}
Karbosiklik kislotalarni diazometan yordamida eferlash mumkin.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mo>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mo><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup><mo stretchy="false">
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mo><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup><mo>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mo><msubsup><mtext>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
</mn></mrow></msubsup></mrow></mstyle></mrow></semantics></math>
RCO
2
H
+
CH
2
N
2
⟶
RCO
2
CH
3
+
N
2
{\displaystyle {\ce {RCO2H + CH2N2 -> RCO2CH3 + N2}}}
Ushbu diazometandan foydalanib, karboksilik kislotalarning aralashmalarini gaz xromatografiyasi orqali tahlil qilish uchun, miqdoriy rentabelliklarda ularning metil efirlariga aylantirilish mumkin. Ixtisoslashtirilgan organik sintetik operatsiyalarda foydalidir, ammo keng ko'lamli ilovalar uchun juda xavfli va qimmat hisoblanadi.
Karboksilik kislotalarning epoksidlar bilan eferifikatsiyasi Tahrirlash
Karboksilik kislotalar epoksidlar bilan ishlov berish orqali eferlanadi va β-gidroksiefirlarni beradi.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mo>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mo><msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mo stretchy="false">
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mo><msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mn></mrow></msubsup><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mo><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext><mo stretchy="false">
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mo></mrow><mtext>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
</mtext></mrow></mstyle></mrow><annotation encoding="application/x-tex"> </annotation></semantics></math>
RCO
2
H
+
RCHCH
2
O
⟶
RCO
2
CH
2
CH
(
OH
)
R
{\displaystyle {\ce {RCO2H + RCHCH2O -> RCO2CH2CH(OH)R}}}
Ushbu reaksiyada akril kislotadan , vinil efer qatronlar ishlab chiqarishda qo'llaniladi.
Asilxloridlar va kislotali angidridlarning alkogollizi Tahrirlash
Spirtli ichimliklar asilxloridlar va kislota angidridlari bilan reaksiyaga kirishib, efirlarni hosil qiladi.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext><mo>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mo><msup><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext><mo>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mo></msup><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext><mo stretchy="false">
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mo><msubsup><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mn></mrow></msubsup><msup><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext><mo>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mo></msup><mo>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mo><mtext>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
</mtext></mrow></mstyle></mrow><annotation encoding="application/x-tex"> </annotation></semantics></math>
RCOCl
+
R
′
OH
⟶
RCO
2
R
′
+
HCl
{\displaystyle {\ce {RCOCl + R'OH -> RCO2R' + HCl}}}
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mo stretchy="false">
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mn></mrow></msubsup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mo>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo><msup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mo>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo></msup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mo stretchy="false">
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo><msubsup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mn></mrow></msubsup><msup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mo>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo></msup><mo>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mo><msubsup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mn></mrow></msubsup><mtext>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
</mtext></mrow></mstyle></mrow><annotation encoding="application/x-tex"> </annotation></semantics></math>
(
RCO
)
2
O
+
R
′
OH
⟶
RCO
2
R
′
+
RCO
2
H
{\displaystyle {\ce {(RCO)2O + R'OH -> RCO2R' + RCO2H}}}
Reaksiyani qaytarib bo'lmaydi va ishni soddalashtiradi. Asilxloridlar va kislota angidridlari ham suv bilan reaksiyaga kirishganligi sababli, suvsiz sharoitlarga afzallik beriladi. Amidlarni hosil qilish uchun aminlarning o'xshash asilatsiyasi kamroq sezgirdir, chunki aminlar kuchli nukleofillardir va suvga qaraganda tezroq reaksiyaga kirishadi.Faqat laboratoriya miqyosidagi protseduralar uchun qo'llaniladi, chunki u qimmat.
Karboksilat tuzlarining alkillanishi Tahrirlash
Eferifikatsiya qilish uchun keng qo'llanilmasa ham, karboksilat anionlarining tuzlari eferlarni berish uchun alkilgalogenidlar bilan alkillashtiruvchi vosita bo'lishi mumkin. Agar alkilxlorid ishlatilgan bo'lsa, yodid tuzi reaksiyani katalizlashi mumkin (Finkelshteyn reaksiyasi ). Karboksilat tuzi ko'pincha joyida hosil bo'ladi[12] . Qiyin holatlarda kumush karboksilatdan foydalanish mumkin, chunki kumush ioni galogenid bilan koordinatalanadi, bu uning ketishiga yordam beradi va reaksiya tezligini oshiradi. Ushbu reaksiya anion mavjudligi bilan bog'liq muammolardan aziyat chekishi mumkin va shuning uchun fazalarni uzatish katalizatorlari yoki DMF kabi yuqori qutbli aprotik erituvchilar qo'shilishi mumkin.
Transeferifikatsiyasi Tahrirlash
Bir eferni boshqasiga almashtirishni o'z ichiga olgan transeferifikatsiya keng qo'llaniladi.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><msubsup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mn></mrow></msubsup><msup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mo>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mo></msup><mo>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mo><msubsup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mn></mrow></msubsup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mo stretchy="false">
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mo><msubsup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mn></mrow></msubsup><msubsup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mn></mrow></msubsup><mo>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mo><msup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext><mo>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mo></msup><mtext>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
</mtext></mrow></mstyle></mrow><annotation encoding="application/x-tex"> </annotation></semantics></math>
RCO
2
R
′
+
CH
3
OH
⟶
RCO
2
CH
3
+
R
′
OH
{\displaystyle {\ce {RCO2R' + CH3OH -> RCO2CH3 + R'OH}}}
Transeferifikatsiya gidrolizlanish kabi kislotalar va asoslar tomonidan katalizlanadi. Reaksiya triglitseridlarni parchalash uchun keng qo'llaniladi, masalan, yog' kislotasi efirlari va spirtli ichimliklarni ishlab chiqarishda. Poli(etilen tereftalat) dimetiltereftalat va etilen glikolning transeferifikatsiyasi natijasida hosil bo'ladi.
<math xmlns="http://www.w3.org/1998/Math/MathML "><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><mrow class="MJX-TeXAtom-ORD"><mfrac><mrow><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow><mrow class="MJX-TeXAtom-ORD"><mtext class="MJX-tex-mathit" mathvariant="italic">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext></mrow></mfrac></mrow><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mrow class="MJX-TeXAtom-ORD"><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn></mrow></msubsup><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><mo stretchy="false">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mrow class="MJX-TeXAtom-ORD"><mtext class="MJX-tex-mathit" mathvariant="italic">
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext></mrow></mrow></msubsup><mo>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mo><mn>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mn><msubsup><mtext>
(
C
6
H
4
)
(
CO
2
CH
3
)
2
+
2
C
2
H
4
(
OH
)
2
⟶
1
n
[
(
C
6
H
4
)
(
CO
2
)
2
(
C
2
H
4
)
]
n
+
2
CH
3
OH
{\displaystyle {\ce {(C6H4)(CO2CH3)2{}+2C2H4(OH)2->{\frac {1}{\mathit {n}}}[(C6H4)(CO2)2(C2H4)]_{\mathit {n}}{}+2CH3OH}}}
</mtext><mrow class="MJX-TeXAtom-ORD"><mn>
(
C
6
H
4
)
(
CO